Ultrahigh-resolution FT-ICR mass spectrometry for molecular characterisation of pressurised hot water-extractable organic matter in soils
详细信息    查看全文
  • 作者:Julien Guigue ; Mourad Harir ; Olivier Mathieu ; Marianna Lucio…
  • 刊名:Biogeochemistry
  • 出版年:2016
  • 出版时间:July 2016
  • 年:2016
  • 卷:128
  • 期:3
  • 页码:307-326
  • 全文大小:2,500 KB
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geochemistry
    Biochemistry
    Soil Science and Conservation
    Terrestrial Pollution
  • 出版者:Springer Netherlands
  • ISSN:1573-515X
  • 卷排序:128
文摘
Dissolved organic matter in soil is a highly reactive pool of organic matter and is of great importance for biogeochemical cycles in soil. A better understanding of its dynamics relies on its molecular characterisation. Here, the molecular composition of water-extracted organic matter at elevated pressure and temperature (PH-WEOM) obtained from 120 Burgundy soils was investigated using high-field Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR MS). Unsupervised multivariate statistical analysis (UMSA) was used to retrieve classes of samples with specific molecular characteristics. Accordingly, van Krevelen diagram, Kendrick mass defect (KMD), as well as aromaticity index (AI) and aromaticity equivalent (Xc), were applied to present a pool of ubiquitous molecular formulas and to evaluate the PH-WEOM molecular heterogeneity in the sample set. Based on UMSA, the PH-WEOM from forest soils revealed a clearly distinct molecular composition, with major contributions from lignin- and tannin-like compounds, and with its aromaticity related to soil characteristics, especially the soil pH. No clear evidence of land-cover influence on the PH-WEOM molecular composition was found for cropland and grassland soils, but the role of pH was also identified for these samples, and agrees with molecular patterns attributed to microbial activity, with the presence of compounds with high H/C ratio. A group of samples from cropland soils developed on residual formations is characterised by a very specific molecular composition, rich in aliphatic organosulfur-like compounds, highlighting the importance of specific soil processes in the molecular composition of PH-WEOM. This work demonstrates the potential of FT-ICR MS to resolve the high chemical complexity of PH-WEOM in soils and the intricate influences of both biotic and abiotic environmental factors on the molecular composition of PH-WEOM in soils.KeywordsSoil organic matterWater-extractable organic matterFourier transform-ion cyclotron resonance-mass spectrometryMolecular compositionChemometrics

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700