Thermal conductivity of partially graphitized biocarbon obtained by carbonization of medium-density fiberboard in the presence of a Ni-based catalyst
详细信息    查看全文
  • 作者:T. S. Orlova ; L. S. Parfen’eva ; B. I. Smirnov…
  • 刊名:Physics of the Solid State
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:58
  • 期:1
  • 页码:208-214
  • 全文大小:519 KB
  • 参考文献:1.P. Greil, T. Lifka, and A. Kaindl, J. Eur. Ceram. Soc. 18 (14), 1961 (1998).CrossRef
    2.P. Greil, J. Eur. Ceram. Soc. 21 (2), 105 (2001).CrossRef
    3.V. S. Kaul, K. T. Faber, R. Sepulveda, A. R. de Arellano Lopez, and J. Martinez-Fernandez, Mater. Sci. Eng., A 428 (1–2), 225 (2006).CrossRef
    4.A. R. de Arellano-Lopez, J. Martinez-Fernandez, P. Gonzalez, C. Dominguez, V. Fernandez-Quero, and M. Singh, Int. J. Appl. Ceram. Technol. 1 (1), 56 (2004).CrossRef
    5.F. M. Varela-Feria, J. Martinez-Fernandez, A. R. de Arellano-Lopez, and M. Singh, J. Eur. Ceram. Soc. 22 (14–15), 2719 (2002).CrossRef
    6.C. E. Byrne and D. C. Nagle, Carbon 35 (2), 259 (1997).CrossRef
    7.J. Klett, R. Hardy, E. Romine, C. Walls, and T. Burchell, Carbon 38 (7), 953 (2000).CrossRef
    8.D. Gaies and K. T. Faber, Carbon 40 (7), 1137 (2002).CrossRef
    9.R. E. Franklin, Acta Crystallogr. 4 (5), 235 (1951).
    10.C. E. Byrne and D. C. Nagle, Carbon 35 (2), 267 (1997).CrossRef
    11.H. M. Cheng, H. Endo, T. Okabe, K. Saito, and G. B. Zheng, J. Porous Mater. 6 (3), 233 (1999).CrossRef
    12.L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, N. V. Sharenkova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, J. Mucha, A. R. de Arellano-Lopez, J. Martinez-Fernandez, and F. M. Varela-Feria, Phys. Solid State 48 (3), 441 (2006).CrossRef ADS
    13.L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, N. V. Sharenkova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, T. E. Wilkes, and K. T. Faber, Phys. Solid State 50 (12), 2245 (2008).CrossRef ADS
    14.L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, N. V. Sharenkova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, J. Mucha, A. R. de Arellano-Lopez, and J. Martinez-Fernandez, Phys. Solid State 51 (10), 2023 (2009).CrossRef ADS
    15.L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, N. V. Sharenkova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, T. E. Wilkes, and K. T. Faber, Phys. Solid State 52 (6), 1115 (2010).CrossRef ADS
    16.L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, J. Muha, and M. C. Vera, Phys. Solid State 53 (11), 2398 (2011).CrossRef ADS
    17.L. S. Parfen’eva, T. S. Orlova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, and J. Ramirez-Rico, Phys. Solid State 56 (5), 1071 (2014).CrossRef ADS
    18.N. F. Kartenko, T. S. Orlova, L. S. Parfen’eva, B. I. Smirnov, and I. A. Smirnov, Phys. Solid State 56 (11), 2348 (2014).CrossRef ADS
    19.M. T. Johnson and K. T. Faber, J. Mater. Res. 26 (1), 18 (2011).CrossRef ADS
    20.M. T. Johnson, A. S. Childers, J. Ramirez-Rico, H. Wang, and K. T. Faber, Composites, Part A 53, 182 (2013).CrossRef
    21.A. Gutierrez-Pardo, J. Ramirez-Rico, A. R. de Arellano-Lopez, and J. Martinez-Fernandez, J. Mater. Sci. 49, 22 (2014).CrossRef
    22.A. Gutierrez-Pardo, J. Ramirez-Rico, R. Cabezas-Rodriguez, and J. Martinez-Fernandez, J. Power Sources 278, 18 (2015).CrossRef ADS
    23.T. S. Orlova, B. K. Kardashev, B. I. Smirnov, A. Gutierrez-Pardo, J. Ramirez-Rico, and J. Martinez-Fernandez, Phys. Solid State 57 (3), 586 (2015).CrossRef ADS
    24.V. V. Shpeizman, T. S. Orlova, B. I. Smirnov, A. Gutierrez-Pardo, and J. Ramirez-Rico, Mater. Phys. Mech. 21, 200 (2014).
    25.V. V. Popov, T. S. Orlova, A. Gutierrez-Pardo, and J. Ramirez-Rico, Phys. Solid State 57 (9), 1746 (2015).CrossRef ADS
    26.A. Jezowski, J. Mucha, and G. Pompe, J. Phys. D: Appl. Phys. 20, 1500 (1987).CrossRef ADS
    27.A. L. Love, J. Appl. Phys. 22, 252 (1951).ADS
    28.V. V. Popov, T. S. Orlova, and J. Ramirez-Rico, Phys. Solid State 51 (11), 2247 (2009).CrossRef ADS
    29.V. V. Popov, T. S. Orlova, E. Enrique Magarino, M. A. Bautista, and J. Martinez-Fernandez, Phys. Solid State 53 (2), 276 (2011).CrossRef ADS
    30.E. Ya. Litovskii, Izv. Akad. Nauk SSSR, Neorg. Mater. 16, 559 (1980).
    31.A. A. Balandin, Nat. Mater. 10, 569 (2011).CrossRef ADS
    32.A. J. Bullen, K. E. O’Hara, and D. G. Cahill, J. Appl. Phys. 88, 6317 (2000).CrossRef ADS
    33.D. T. Morelli and G. A. Slack, in High Thermal Conductivity Materials, Ed. by S. L. Shinde and J. S. Goela (Springer-Verlag, New York, 2006), p. 37.
    34.N. C. Gallego and J. W. Klett, Carbon 41, 1461 (2003).CrossRef
    35. Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Energoizdat, Moscow, 1991; CRC Press, Boca Raton, Florida, United States, 1996).
  • 作者单位:T. S. Orlova (1) (2)
    L. S. Parfen’eva (1)
    B. I. Smirnov (1)
    A. Gutierrez-Pardo (3)
    J. Ramirez-Rico (3)

    1. Ioffe Physical-Technical Institute, Russian Academy of Sciences, Politeknicheskaya ul. 26, St. Petersburg, 194021, Russia
    2. National Research University of Information Technologies, Mechanics, and Optics, Kronverksky pr. 49, St. Petersburg, 197101, Russia
    3. Departamento de Fisica de la Materia Condensada, Instituto de Ciencia de Materiales de Sevilla (ICMS), Universidad de Sevilla, Sevilla, 41012, Spain
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Solid State Physics and Spectroscopy
    Russian Library of Science
  • 出版者:MAIK Nauka/Interperiodica distributed exclusively by Springer Science+Business Media LLC.
  • ISSN:1090-6460
文摘
The thermal conductivity k and resistivity ρ of biocarbon matrices, prepared by carbonizing medium-density fiberboard at T carb = 850 and 1500°C in the presence of a Ni-based catalyst (samples MDF-C( Ni)) and without a catalyst (samples MDF-C), have been measured for the first time in the temperature range of 5–300 K. X-ray diffraction analysis has revealed that the bulk graphite phase arises only at T carb = 1500°C. It has been shown that the temperature dependences of the thermal conductivity of samples MDFC- 850 and MDF-C-850(Ni) in the range of 80–300 K are to each other and follow the law of k(T) ∼ T 1.65, but the use of the Ni-catalyst leads to an increase in the thermal conductivity by a factor of approximately 1.5, due to the formation of a greater fraction of the nanocrystalline phase in the presence of the Ni-catalyst at T carb = 850°C. In biocarbon MDF-C-1500 prepared without a catalyst, the dependence is k(T) ∼ T 1.65, and it is controlled by the nanocrystalline phase. In MDF-C-1500(Ni), the bulk graphite phase formed increases the thermal conductivity by a factor of 1.5–2 compared to the thermal conductivity of MDF-C-1500 in the entire temperature range of 5–300 K; k(T = 300 K) reaches the values of ∼10 W m–1 K–1, characteristic of biocarbon obtained without a catalyst only at high temperatures of T carb = 2400°C. It has been shown that MDF-C-1500(Ni) in the temperature range of 40‒300 K is characterized by the dependence, k(T) ∼ T 1.3, which can be described in terms of the model of partially graphitized biocarbon as a composite of an amorphous matrix with spherical inclusions of the graphite phase. Original Russian Text © T.S. Orlova, L.S. Parfen’eva, B.I. Smirnov, A. Gutierrez-Pardo, J. Ramirez-Rico, 2016, published in Fizika Tverdogo Tela, 2016, Vol. 58, No. 1, pp. 200–206.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700