用户名: 密码: 验证码:
A note on polynomial chaos expansions for designing a linear feedback control for nonlinear systems
详细信息    查看全文
文摘
This paper presents a polynomial chaos-based framework for designing optimal linear feedback control laws for nonlinear systems with stochastic parametric uncertainty. The spectral decomposition of the original stochastic dynamical model in an orthogonal polynomial basis, prescribed by the Wiener–Askey scheme, provides a deterministic model from which the optimal linear control law is designed. Optimality of the proposed control law is proved by solving the Hamilton–Jacobi–Bellman equation, and asymptotic stability of the controlled nonlinear systems is guaranteed in the Lyapunov sense. We are especially interested in synchronization of chaotic systems. For this reason, the control strategy is applied in the trajectory tracking of periodic orbits for the Duffing oscillator and the Rössler system with uncertain stochastic parameters and initial conditions. The results are verified with Monte Carlo simulations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700