Constraining the focal mechanism of the Lushan earthquake with observations of the Earth’s free oscillations
详细信息    查看全文
  • 作者:Ying Jiang ; XiaoGang Hu ; ChengLi Liu ; HePing Sun
  • 关键词:Lushan earthquake ; focal mechanism solutions ; Earth’s free oscillations ; superconductive gravimeter observations ; broadband seismograph observations
  • 刊名:Science China Earth Sciences
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:57
  • 期:9
  • 页码:2064-2070
  • 全文大小:1,334 KB
  • 参考文献:1. Aid K, Richards P G. 1980. Quantitative Seismology: Theory and Methods. San Francisco: Freeman. 51
    2. Crossley D, Hinderer J. 1995. Global Geodynamics Project-GGP: Status Report, 1994. Proc Second IAG Workshopn on Non-tidal Gravity Changes: Intercomparison between Absolute and Superconducting Gravimeters, Cahiers du Centre Européen de Géodynamique et de Séismologie. 244-74
    3. Duputel Z, Rivera L, Kanamori H, et al. 2011. Real-time W phase inversion during the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planet Space, 63: 535-39 CrossRef
    4. Dziewonski A M, Anderson D L. 1981. Preliminary reference Earth model. Phys Earth Planet Inter, 25: 297-56 CrossRef
    5. Hu X G, Liu L T, Hinderer J, et al. 2005. Wavelet filter analysis of local atmospheric pressure effects on gravity variations. J Geod, 79: 447-59 CrossRef
    6. Geller R J, Stein S. 1979. Time-domain attenuation measurements for fundamental spheroidal modes (0S6 to 0S28) for the 1977 Indonesian earthquake. Bull Seismol Soc Amer, 69: 1671-691
    7. Hu X G, Liu L T, Hinderer J, et al. 2006. Wavelet filter analysis of atmospheric pressure effects in the long-period seismic mode band. Phys Earth Planet Inter, 154: 70-4 CrossRef
    8. Liu C L, Zheng Y, Ge C, et al. 2013. Rupture process of the / Ms7. 0 Lushan earthquake. Sci China Earth Sci, 56: 1187-192 CrossRef
    9. Liu J, Yi G X, Zhang Z W, et al. 2013. Introduction to the Lushan, Sichuan M7.0 earthquake on 20 April 2013. Chin J Geophys, 56: 1404-407
    10. Park J, Song T R A, Tromp J, et al. 2005. Earth’s free oscillations excited by the 26 December 2004 Sumatra-Andaman earthquake. Science, 308: 1139-144 CrossRef
    11. Shan B, Xiong X, Zheng Y, et al. 2013. Stress changes on major faults caused by 2013 Lushan earthquake and its relationship with 2008 Wenchuan earthquake. Sci China Earth Sci, 56: 1169-176 CrossRef
    12. Stein S, Okal E A. 2005. Seismology: Speed and size of the Sumatra earthquake. Nature, 308: 1127-139
    13. Vauterin P. 1998. Tsoft: Graphical and interactive software for the analysis of Earth tide data. Proc 13th Int Sympos on Earth Tides, Brussels, Observatoire Royal de Belgique, Série Géophysique. 481-86
    14. Wang W M, Hao J L, Yao Z X. 2013. Preliminary result for rupture process of Apr.20, 2013 Lushan Earthquake, Sichuan, China. Chin J Geophys, 56: 1412-417
    15. Wenzel H G. 1995. The Nanogal Software: Data Processing Package ETERNA 3.3. Bull Inf Marées Terres, 124: 9425-439
    16. Xie Z J, Jin B K, Zheng Y, et al. 2013. Source parameters inversion of the 2013 Lushan earthquake by combining teleseismic waveforms and local seismograms. Sci China Earth Sci, 56: 1177-186 CrossRef
    17. Xue X X, Hu X G, Hao X G, et al. 2012. Constraining focal mechanism of the 2011 Tohoku earthquake by gravity observations. Chin J Geophys, 55: 1-0 CrossRef
    18. Zeng X F, Luo Y, Han L B, et al. 2013. The Lushan Ms7.0 earthquake on 20 April 2013: A high-angle thrust event. Chin J Geophys, 56: 1418-424
    19. Zheng Y, Ge C, Xie Z J, et al. 2013. Crustal and upper mantle structure and the deep seismogenic environment in the source regions of the Lushan earthquake and the Wenchuan earthquake. Sci China Earth Sci, 56: 1158-168 CrossRef
    20. Zheng Y, Ma H S, Lü J, et al. 2009. Source mechanism of strong aftershocks ( / Ms ?5.6) of the 2008/05/12 Wenchuan earthquake and the implication for seismotectonics. Sci China Ser D-Earth Sci, 52: 739-53 CrossRef
    21. Zürn W, Widmer R. 1995. On noise reduction in vertical seismic records below 2 mHz using local barometric pressure. Geophys Res Lett, 22: 3537-540 CrossRef
  • 作者单位:Ying Jiang (1) (2)
    XiaoGang Hu (1)
    ChengLi Liu (1) (2)
    HePing Sun (1)

    1. State Key Laboratory of Geodesy and Earth’s Dynamics, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan, 430077, China
    2. University of Chinese Academy of Sciences, Beijing, 100049, China
  • ISSN:1869-1897
文摘
The amplitudes of the Earth’s free oscillations have a close relationship to earthquake focal mechanisms. Focal mechanisms of large earthquakes can be well analyzed and constrained with observations of long period free oscillations. Although the 2013 Lushan earthquake was only moderately sized, observable spherical normal modes were excited and clearly observed by a superconductive gravimeter and a broadband seismometer. We compare observed free oscillations with synthetic normal modes corresponding to four different focal mechanisms for the Lushan earthquake. The results show that source parameters can be analyzed and constrained by spherical normal modes in a 2.3- mHz frequency band. The scalar seismic moment M 0 has a major influence on the amplitudes of free oscillations; additionally, the strike, dip, rake and depth of the hypocenter have minor influences. We found that the synthetic modes corresponding to the focal mechanism determined by the Global Centroid Moment Tensor show agreement to the observed modes, suggesting that earthquake magnitudes predicted in this way can readily reflect the total energy released by the earthquake. The scalar seismic moment obtained by far-field body wave inversion is significantly underestimated. Focal mechanism solutions can be improved by joint inversion of far- and near-field data.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700