Surface wave phase velocity maps from multiscale wave field interpolation
详细信息    查看全文
  • 作者:Christian Weidle (1) cweidle@geophysik.uni-kiel.de
  • 关键词:Surface waves and free oscillations ; Seismic tomography – ; Wave propagation
  • 刊名:Computational Geosciences
  • 出版年:2012
  • 出版时间:June 2012
  • 年:2012
  • 卷:16
  • 期:3
  • 页码:535-549
  • 全文大小:1.3 MB
  • 参考文献:1. Akima, H.: A method of bivariate interpolation and smooth surface fitting for irregularly distributed data points. ACM Trans. Math. Softw. 4(2), 148–159 (1978)
    2. Allen, R.M., Nolet, G., Morgan, W.J., Vogfjord, K., Bergsson, B.H., Erlendsson, P., Foulger, G.R., Jakobsd贸ttir, S., Julian, B.R., Pritchard, M., Ragnarsson, S., Stefansson, R.: The thin hot plume beneath Iceland. Geophys. J. Int. 137(1), 51–63 (1999)
    3. Alsina, D., Snieder, R.: Constraints on the velocity structure beneath the Tornquist–Teisseyre Zone from beam-forming analysis. Geophys. J. Int. 126(1), 205–218 (1996)
    4. Bijwaard, H., Spakman, W., Engdahl, E.: Closing the gap between regional and global travel time tomography. J. Geophys. Res. 103(12), 30 055–30 078 (1998)
    5. Bodin, T., Maupin, V.: Resolution potential of surface wave phase velocity measurements at small arrays. Geophys. J. Int. 172(2), 698–706 (2008)
    6. Bodin, T., Sambridge, M.: Seismic tomography with the reversible jump algorithm. Geophys. J. Int. 178(3), 1411–1436 (2009)
    7. Bronstein, I., Semendjajew, K., Musiol, G., M眉hlig, H.: Taschenbuch der Mathematik, 2 edn. Harri Deutsch, Thun, Frankfurt am Main (1995)
    8. Debayle, E.: Sv-wave azimuthal anisotropy in the Australian upper mantle: preliminary results from automated Rayleigh waveform inversion. Geophys. J. Int. 137(3), 747–754 (1999)
    9. Evans, J.R., Zucca, J.J.: Active high-resolution seismic tomography of compressional wave velocity and attenuation structure at Medicine Lake volcano, northern California Cascade Range. J. Geophys. Res. 93(B12), 15,016–15,036 (1988)
    10. Fichtner, A., Kennett, B.L., Igel, H., Bunge, H.P.: Full waveform tomography for radially anisotropic structure: new insights into present and past states of the Australasian upper mantle. Earth Planet. Sci. Lett. 290(3–4), 270–280 (2010)
    11. Forsyth, D.W., Li, A.: Array-analysis of two-dimensional variations in surface wave phase velocity and azimuthal anisotropy in the presence of multi-pathing interference. In: Levander, A., Nolet, G. (eds.) Seismic Earth: Array Analysis of Broadband Seismograms, vol. 157, pp. 81–98. Geophysical Monograph Series, AGU, Washington, DC (2005), ISBN 0-87590-422-X
    12. Friederich, W., Hunzinger, S., Wielandt, E.: A note on the interpretation of seismic surface waves over three-dimensional structures. Geophys. J. Int. 143(2), 335–339 (2000)
    13. Friederich, W., Wielandt, E.: Interpretation of seismic surface waves in regional networks: joint estimation of wavefield geometry and local phase velocity, method and numerical tests. Geophys. J. Int. 120(3), 731–744 (1995)
    14. Friederich, W., Wielandt, E., Stange, S.: Non-plane geometries of seismic surface wavefields and their implications for regional surface-wave tomography. Geophys. J. Int. 119(3), 931–948 (1994)
    15. Lebedev, S., Nolet, G., Meier, T., van der Hilst, R.: Automated multimode inversion of surface and s waveforms. Geophys. J. Int. 162(3), 951–964 (2005)
    16. L茅v锚que, J.J., Rivera, L., Wittlinger, G.: On the use of the checker-board test to assess the resolution of tomographic inversions. Geophys. J. Int. 115, 313–318 (1993)
    17. Levshin, A., Yanovskaya, T., Lander, A., Bukchin, B., Barmin, M., Ratnikova, L., Its, E.: Seismic Surface Waves in a Laterally Inhomogeneous Earth. Kluwer Academic, Dordrecht (1989)
    18. Levshin, A.L., Schweitzer, J., Weidle, C., Shapiro, N.M., Ritzwoller, M.H.: Surface wave tomography of the Barents Sea and surrounding regions. Geophys. J. Int. 170(1), 441–459 (2007)
    19. Lin, F.C., Ritzwoller, M.H., Snieder, R.: Eikonal tomography: surface wave tomography by phase front tracking across a regional broad-band seismic array. Geophys. J. Int. 177(3), 1091–1110 (2009)
    20. Lin, F.C., Ritzwoller, M.H., Yang, Y., Moschetti, M.P., Fouch, M.J.: Complex and variable crustal and uppermost mantle seismic anisotropy in the western United States. Nature Geoscience 4(1), 55–61 (2011)
    21. Maupin, V.: A multiple-scattering scheme for modelling surface wave propagation in isotropic and anisotropic three-dimensional structures. Geophys. J. Int. 146(2), 332–348 (2001)
    22. Meier, T., Dietrich, K., St枚ckhert, B., Harjes, H.P.: One-dimensional models of shear wave velocity for the eastern Mediterranean obtained from the inversion of Rayleigh wave phase velocities and tectonic implications. Geophys. J. Int. 156(1), 45–58 (2004)
    23. Pedersen, H.A.: Impacts of non-plane waves on two-station measurements of phase velocities. Geophys. J. Int. 165(1), 279–287 (2006)
    24. Pedersen, H.A., Coutant, O., Deschamps, A., Soulage, M., Cotte, N.: Measuring surface wave phase velocities beneath small broad-band arrays: tests of an improved algorithm and application to the French Alps. Geophys. J. Int. 154(3), 903–912 (2003)
    25. Pollitz, F.F.: Regional velocity structure in northern California from inversion of scattered seismic surface waves. J. Geophys. Res. 104, 15,043–15,072 (1999)
    26. Pollitz, F.F., Snoke, J.A.: Rayleigh-wave phase-velocity maps and three-dimensional shear velocity structure of the western US from local non-plane surface wave tomography. Geophys. J. Int. 180(3), 1153–1169 (2010)
    27. Renka, R.J.: Algorithm 751: Tripack: a constrained two-dimensional Delaunay triangulation package. ACM Trans. Math. Softw. 22(1), 1–8 (1996)
    28. Renka, R.J., Brown, R.: Remark on algorithm 761. ACM Trans. Math. Softw. 24(4), 383–385 (1998)
    29. Renka, R.J., Brown, R.: Algorithm 792: accuracy test of ACM algorithms for interpolation of scattered data in the plane. ACM Trans. Math. Softw. 25(1), 78–94 (1999)
    30. Renka, R.J., Cline, A.K.: A triangle-based C1 interpolation method. Rocky Mt. J. Math. 14(1), 223–237 (1984)
    31. Shapiro, N.M., Ritzwoller, M.H.: Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle. Geophys. J. Int. 151(1), 88–105 (2002)
    32. Smith, W., Wessel, P.: Gridding with continuous curvature splines in tension. Geophysics 55, 293–305 (1990)
    33. Weidle, C., Maupin, V., Ritter, J., Kvaerna, T., Schweitzer, J., Balling, N., Thybo, H., Faleide, J.I., Wenzel, F.: Magnus—a seismological broadband experiment to resolve crustal and upper mantle structure beneath the southern Scandes mountains in Norway. Seism. Res. Let. 81(1), 76–84 (2010)
    34. Weidle, C., Widiyantoro, S., Calixto, w.G.: Improving depth resolution of teleseismic tomography by simultaneous inversion of teleseismic and global p-wave traveltime data application to the Vrancea region in Southeastern Europe. Geophys. J. Int. 162(19), 811–823 (2005)
    35. Wessel, P., Smith, W.H.: New, improved version of the generic mapping tools released. EOS Trans. AGU 79, 579 (1998)
    36. Widiyantoro, S., van der Hilst, R.: Mantle structure beneath Indonesia inferred from high-resolution tomographic imaging. Geophys. J. Int. 130, 167–182 (1997)
    37. Wielandt, E.: Propagation and structural interpretation of non-plane waves. Geophys. J. Int. 113(1), 45–53 (1993)
    38. Yang, Y., Li, A., Ritzwoller, M.H.: Crustal and uppermost mantle structure in Southern Africa revealed from ambient noise and teleseismic tomography. Geophys. J. Int. 174(1), 235–248 (2008)
    39. Yang, Y., Ritzwoller, M.H., Lin, F.C., Moschetti, M.P., Shapiro, N.M.: Structure of the crust and uppermost mantle beneath the western united states revealed by ambient noise and earthquake tomography. J. Geophys. Res. 113(B12), B12,310 (2008)
    40. Zhou, H.: Multiscale traveltime tomography. Geophysics 68(5), 1639–1649 (2003)
  • 作者单位:1. Department of Geosciences, University of Oslo, PO Box 1047, 0316 Oslo, Norway2. Institute of Geosciences, Christian-Albrechts-Universit盲t zu Kiel, Otto-Hahn-Platz 1, 24118 Kiel, Germany
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Mathematical Modeling and IndustrialMathematics
    Geotechnical Engineering
    Hydrogeology
    Soil Science and Conservation
  • 出版者:Springer Netherlands
  • ISSN:1573-1499
文摘
Availability of spatially dense broadband observations of seismic surface wave fields allows to derive phase velocity maps on regional scale by non-tomographic means. I present a multiscale interpolation scheme for surface wave fields where for each observed wave field, a multiscale phase velocity map and its standard deviation are calculated from subsets of the available data. Isotropic phase velocity (with an estimate on its standard deviation) is then found as the weighted mean of multiscale maps from different observations. Comparison of different interpolation schemes on synthetic wave fields shows that bivariate linear interpolation of phases in a triangulated region, in conjunction with multiscale stacking, is not inferior than methods involving higher-order polynomials. The recovered phase velocity maps are, in the presence of random uncertainties with realistic magnitude, largely free of artifacts and restore a synthetic input model reasonably well. The method is applied to a subset of Rayleigh wave observations at USArray which yields phase velocity maps well within the range of published results. Multiscale interpolation seems to be a practical alternative to tomographic inversion for regional broadband seismic networks (≥30 stations). It requires no choice of arbitrary parameters and is insensitive to number of earthquakes and their azimuthal distribution.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700