Hydrogen production under salt stress conditions by a freshwater Rhodopseudomonas palustris strain
详细信息    查看全文
  • 作者:Alessandra Adessi ; Margherita Concato…
  • 关键词:Biological hydrogen production ; Photofermentation ; Rhodopseudomonas palustris ; Salt stress ; Trehalose
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:100
  • 期:6
  • 页码:2917-2926
  • 全文大小:573 KB
  • 参考文献:Adessi A, De Philippis R (2014) Photobioreactor design and illumination systems for H2 production with anoxygenic photosynthetic bacteria: a review. Int J Hydrog Energy 39:3127–3141. doi:10.​1016/​j.​ijhydene.​2013.​12.​084 CrossRef
    Adessi A, De Philippis R, Hallenbeck PC (2012a) Combined systems for maximum substrate conversion. In: Hallenbeck PC (ed) Microbial technologies in advanced biofuels production. Springer, New York, pp 107–126CrossRef
    Adessi A, Torzillo G, Baccetti E, De Philippis R (2012b) Sustained outdoor H2 production with Rhodopseudomonas palustris cultures in a 50 L tubular photobioreactor. Int J Hydrog Energy 37:8840–8849. doi:10.​1016/​j.​ijhydene.​2012.​01.​081 CrossRef
    APHA (1992) Standard methods for the examination of water and wastewater. American Public Health Association, Washington
    Arguelles JC (2000) Physiological roles of trehalose in bacteria and yeasts: a comparative analysis. Arch Microbiol 174:217–224. doi:10.​1007/​s002030000192 CrossRef PubMed
    Bianchi L, Mannelli F, Viti C, Adessi A, De Philippis R (2010) Hydrogen-producing purple non-sulfur bacteria isolated from the trophic lake Averno (Naples, Italy). Int J Hydrog Energy 35:12216–12223. doi:10.​1016/​j.​ijhydene.​2010.​08.​038 CrossRef
    Burgess JG, Kawaguchi R, Yamada A, Matsunaga T (1994) Rhodobacter marinus sp. nov.: a new marine hydrogen producing photosynthetic bacterium which is sensitive to oxygen and sulphide. Microbiology 140:965–970CrossRef
    Cai J, Wang G (2012) Hydrogen production by a marine photosynthetic bacterium, Rhodovulum sulfidophilum P5, isolated from a shrimp pond. Int J Hydrog Energy 37:15070–15080. doi:10.​1016/​j.​ijhydene.​2012.​07.​130 CrossRef
    Cai J, Wang G (2013) Screening and hydrogen-producing characters of a highly efficient H2-producing mutant of Rhodovulum sulfidophilum P5. Bioresour Technol 142:18–25. doi:10.​1016/​j.​biortech.​2013.​05.​009 CrossRef PubMed
    Cai J, Wang G (2014) Photo-biological hydrogen production by an acid tolerant mutant of Rhodovulum sulfidophilum P5 generated by transposon mutagenesis. Bioresour Technol 154:254–259. doi:10.​1016/​j.​biortech.​2013.​12.​057 CrossRef PubMed
    Cai J, Wang G, Pan G (2012) Hydrogen production from butyrate by a marine mixed phototrophic bacterial consort. Int J Hydrog Energy 37:4057–4067. doi:10.​1016/​j.​ijhydene.​2011.​11.​101 CrossRef
    Carlozzi P, Buccioni A, Minieri S, Pushparai B, Piccardi R, Ena A, Pintucci C (2010) Production of bio-fuels (hydrogen and lipids) through a photofermentation process. Bioresour Technol 101:3115–3120. doi:10.​1016/​j.​biortech.​2009.​12.​049 CrossRef PubMed
    Dipasquale L, Adessi A, d’Ippolito G, Rossi F, Fontana A, De Philippis R (2014) Introducing capnophilic lactic fermentation in a combined dark-photo fermentation process: a route to unparalleled H2 yields. Appl Microbiol Biotechnol 99:1001–1010. doi:10.​1007/​s00253-014-6231-4 CrossRef PubMed
    Galinski EA (1993) Compatible solutes of halophilic eubacteria: molecular principles, water-solute interaction, stress protection. Experientia 49:487–496. doi:10.​1007/​BF01955150 CrossRef
    Gómez X, Fernández C, Fierro J, Sánchez ME, Escapa A, Morán A (2011) Hydrogen production: two stage processes for waste degradation. Bioresour Technol 102:8621–8627. doi:10.​1016/​j.​biortech.​2011.​03.​055 CrossRef PubMed
    Hallenbeck PC (2014) Bioenergy from microorganisms: an overview. In: Zannoni D, De Philippis R (eds) Microbial bioenergy: hydrogen production. Springer, Dordrecht, pp 3–21CrossRef
    Hallenbeck PC, Abo-Hashesh M, Ghosh D (2012) Strategies for improving biological hydrogen production. Bioresour Technol 110:1–9. doi:10.​1016/​j.​biortech.​2012.​01.​103 CrossRef PubMed
    He D, Bultel Y, Magnin J-P, Willison JC (2006) Kinetic analysis of photosynthetic growth and photohydrogen production of two strains of Rhodobacter capsulatus. Enzyme Microb Technol 38:253–259. doi:10.​1016/​j.​enzmictec.​2005.​06.​012 CrossRef
    Hosseinkhani B, Hennebel T, Boon N (2014) Potential of biogenic hydrogen production for hydrogen driven remediation strategies in marine environments. New Biotechnol 31:445–450. doi:10.​1016/​j.​nbt.​2014.​04.​005 CrossRef
    Igeno MI, Del Moral CG, Castillo F, Caballero FJ (1995) Halotolerance of the phototrophic bacterium Rhodobacter capsulatus E1F1 is dependent on the nitrogen source. Appl Environ Microbiol 61:2970–2975PubMedCentral PubMed
    Ike A, Toda N, Tsuji N, Hirata K, Miyamoto K (1997) Hydrogen photoproduction from CO2-fixing microalgal biomass: application of halotolerant photosynthetic bacteria. J Ferment Bioeng 84:606–609CrossRef
    Ike A, Murakawa T, Kawaguchi H, Hirata K, Miyamoto K (1999) Photoproduction of hydrogen from raw starch using a halophilic bacterial community. J Biosci Bioeng 88:72–77CrossRef PubMed
    Imhoff JF (1992) Taxonomy, phylogeny, and general ecology of anoxygenic phototrophic bacteria. In: Mann NH, Carr NG (eds) Photosynthetic prokaryotes. Springer, New York, pp 53–92CrossRef
    Imhoff JF, Trüper HG (1992) In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The genus Rhodospirillum and related genera. Springer, New York, pp 2141–2155
    Imhoff JF (1993) Osmotic adaptation in halophilic and halotolerant microorganisms. In: Vreeland RH, Hochstein LI (eds) The biology of halophilic bacteria. CRC Press, Boca Raton, pp 211–254
    Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzyme Microb Technol 38:569–582. doi:10.​1016/​j.​enzmictec.​2005.​09.​015 CrossRef
    Keskin T, Abo-Hashesh M, Hallenbeck PC (2011) Photofermentative hydrogen production from wastes. Bioresour Technol 102:8557–8568. doi:10.​1016/​j.​biortech.​2011.​04.​004 CrossRef PubMed
    Koku H, Eroǧlu İ, Gündüz U, Yücel M, Türker L (2003) Kinetics of biological hydrogen production by the photosynthetic bacterium Rhodobacter sphaeroides OU 001. Int J Hydrog Energy 28:381–388CrossRef
    Larimer FW, Chain P, Hauser L, Lamerdin J, Malfatti S, Do L, Land ML, Pelletier DA, Beatty JT, Lang AS, Tabita FR, Gibson JL, Hanson TE, Bobst C, Torres y Torres JL, Peres C, Harrison FH, Gibson J, Harwood CS (2004) Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nat Biotechnol 22:55–61. doi:10.​1038/​nbt923 CrossRef PubMed
    Maeda I, Mizoguchi T, Miura Y (2000) Influence of sulfate-reducing bacteria on outdoor hydrogen production by photosynthetic bacterium with seawater. Curr Microbiol 40:210–213. doi:10.​1007/​s002849910042 CrossRef PubMed
    Makihara F, Tsuzuki M, Sato K, Masuda S, Nagashima KVP, Abo M, Okubo A (2005) Role of trehalose synthesis pathways in salt tolerance mechanism of Rhodobacter sphaeroides f. sp. denitrificans IL106. Arch Microbiol 184:56–65. doi:10.​1007/​s00203-005-0012-5 CrossRef PubMed
    Matsunaga T, Matsunaga N, Tsubaki K, Tanaka T (1986) Development of a gene cloning system for the hydrogen-producing marine photosynthetic bacterium Rhodopseudomonas sp. J Bacteriol 168:460–463PubMedCentral PubMed
    Matsunaga T, Hatano T, Yamada A, Matsumoto M (2000) Microaerobic hydrogen production by photosynthetic bacteria in a double-phase photobioreactor. Biotechnol Bioeng 68:647–651. doi:10.​1002/​(SICI)1097-0290(20000620)68:​63.​0.​CO;2-8 CrossRef PubMed
    McKinlay JB, Oda Y, Rühl M, Posto AL, Sauer U, Harwood CS (2014) Non-growing Rhodopseudomonas palustris increases the hydrogen gas yield from acetate by shifting from the glyoxylate shunt to the tricarboxylic acid cycle. J Biol Chem 289:1960–1970. doi:10.​1074/​jbc.​M113.​527515 PubMedCentral CrossRef PubMed
    Melnicki MR, Bianchi L, De Philippis R, Melis A (2008) Hydrogen production during stationary phase in purple photosynthetic bacteria. Int J Hydrogen Energ 33:6525–6534. doi:10.​1016/​j.​ijhydene.​2008.​08.​041 CrossRef
    Patel SKS, Kalia VC (2013) Integrative biological hydrogen production: an overview. Indian J Microbiol 53:3–10. doi:10.​1007/​s12088-012-0287-6 PubMedCentral CrossRef PubMed
    Redwood MD, Paterson-Beedle M, Macaskie LE (2009) Integrating dark and light bio-hydrogen production strategies: towards the hydrogen economy. Rev Environ Sci Biotechnol 8:149--185. doi:10.​1007/​s11157-008-9144-9
    Reina-Bueno M, Argandoña M, Salvador M, Javier R-M, Iglesias-Guerra F, Csonka LN, Nieto JJ, Vargas C (2012) Role of trehalose in salinity and temperature tolerance in the model halophilic bacterium Chromohalobacter salexigens. PLoS ONE 7:e33587. doi:10.​1371/​journal.​pone.​0033587 PubMedCentral CrossRef PubMed
    Tsuzuki M, Moskvin OV, Kuribayashi M, Sato K, Retamal S, Abo M, Zeilstra-Ryalls J, Gomelsky M (2011) Salt stress-induced changes in the transcriptome, compatible solutes, and membrane lipids in the facultatively phototrophic bacterium Rhodobacter sphaeroides. Appl Environ Microbiol 77:7551–7559. doi:10.​1128/​AEM.​05463-11 PubMedCentral CrossRef PubMed
    Vincenzini M, Marchini A, Ena A, De Philippis R (1997) H2 and poly-β-hydroxybutyrate, two alternative chemicals from purple non sulfur bacteria. Biotechnol Lett 19:759–762. doi:10.​1023/​A:​1018336209252 CrossRef
    Weber J, Krujatz F, Hilpmann G, Grützner S, Herrmann J, Thierfeld S, Bienert G, Illing R, Helbig K, Hurtado A, Cuniberti G, Mertig M, Lange R, Günther E, Optiz J, Lippmann W, Bley T, Haufe N (2014) Biotechnological hydrogen production by photosynthesis. Eng Life Sci 14:592–606. doi:10.​1002/​elsc.​201400056 CrossRef
    Welsh DT, Herbert RA (1993) Identification of organic solutes accumulated by purple and green sulphur bacteria during osmotic stress using natural abundance 13C nuclear magnetic resonance spectroscopy. FEMS Microbiol Ecol 13:145–149. doi:10.​1111/​j.​1574-6941.​1993.​tb00060.​x CrossRef
  • 作者单位:Alessandra Adessi (1) (2)
    Margherita Concato (1)
    Andrea Sanchini (1)
    Federico Rossi (1)
    Roberto De Philippis (1) (2)

    1. Department of Agrifood Production and Environmental Sciences, University of Florence, Piazzale delle Cascine 24, 50144, Florence, Italy
    2. Institute of Chemistry of Organometallic Compounds (ICCOM), CNR, via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Microbiology
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0614
文摘
Hydrogen represents a possible alternative energy carrier to face the growing request for energy and the shortage of fossil fuels. Photofermentation for the production of H2 constitutes a promising way for integrating the production of energy with waste treatments. Many wastes are characterized by high salinity, and polluted seawater can as well be considered as a substrate. Moreover, the application of seawater for bacterial culturing is considered cost-effective. The aims of this study were to assess the capability of the metabolically versatile freshwater Rhodopseudomonas palustris 42OL of producing hydrogen on salt-containing substrates and to investigate its salt stress response strategy, never described before. R. palustris 42OL was able to produce hydrogen in media containing up to 3 % added salt concentration and to grow in media containing up to 4.5 % salinity without the addition of exogenous osmoprotectants. While the hydrogen production performances in absence of sea salts were higher than in their presence, there was no significant difference in performances between 1 and 2 % of added sea salts. Nitrogenase expression levels indicated that the enzyme was not directly inhibited during salt stress, but a regulation of its expression may have occurred in response to salt concentration increase. During cell growth and hydrogen production in the presence of salts, trehalose was accumulated as a compatible solute; it protected the enzymatic functionality against salt stress, thus allowing hydrogen production. The possibility of producing hydrogen on salt-containing substrates widens the range of wastes that can be efficiently used in production processes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700