Investigation of ptsG gene in response to xylose utilization in Corynebacterium glutamicum
详细信息    查看全文
  • 作者:Chen Wang (1)
    Heng Cai (1)
    Zhihui Zhou (1)
    Kai Zhang (1)
    Zhongjun Chen (2)
    Yali Chen (1)
    Honggui Wan (1)
    Pingkai Ouyang (1)
  • 关键词:Corynebacterium glutamicum ; ptsG ; Xylose utilization ; Biomass hydrolysate ; Simultaneous utilization
  • 刊名:Journal of Industrial Microbiology and Biotechnology
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:41
  • 期:8
  • 页码:1249-1258
  • 全文大小:562 KB
  • 参考文献:1. Aduse-Opoku J, Mitchell W (1988) Diauxic growth of / Clostridium thermosaccharolyticum on glucose and xylose. FEMS Microbiol Lett 50(1):45-9 CrossRef
    2. Aristidou A, Penttila M (2000) Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol 11(2):187-98 CrossRef
    3. Beall DS, Ohta K, Ingram LO (1991) Parametric studies of ethanol production form xylose and other sugars by recombinant / Escherichia coli. Biotechnol Bioeng 38(3):296-03 CrossRef
    4. Brückner R, Titgemeyer F (2002) Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol Lett 209(2):141-48 CrossRef
    5. Buschke N, Becker J, Sch?fer R, Kiefer P, Biedendieck R, Wittmann C (2013) Systems metabolic engineering of xylose-utilizing / Corynebacterium glutamicum for production of 1,5-diaminopentane. Biotechnol J 8(5):557-70 CrossRef
    6. Buschke N, Schr?der H, Wittmann C (2011) Metabolic engineering of / Corynebacterium glutamicum for production of 1,5-diaminopentane from hemicellulose. Biotechnol J 6(3):306-17 CrossRef
    7. Chaillou S, Pouwels PH, Postma PW (1999) Transport of D-xylose in / Lactobacillus pentosus, / Lactobacillus casei, and / Lactobacillus plantarum: evidence for a mechanism of facilitated diffusion via the phosphoenolpyruvate: mannose phosphotransferase system. J Bacteriol 181:4768-773
    8. Chatterjee R, Millard CS, Champion K, Clark DP, Donnelly MI (2001) Mutation of the / ptsG gene resulted in increased production of succinate in fermentation of glucose by / Escherichia coli. Appl Environ Microbiol 67(1):148-54 CrossRef
    9. Chiang CJ, Lee HM, Guo HJ, Wang ZW, Lin LJ, Chao YP (2013) Systematic approach to engineer / Escherichia coli pathways for co-utilization of a glucose–xylose mixture. J Agric Food Chem 61(31):7583-590 CrossRef
    10. Hermann T (2003) Industrial production of amino acids by coryneform bacteria. J Biotechnol 104(1-):155-72 CrossRef
    11. Hernández-Montalvo V, Valle F, Bolivar F, Gosset G (2001) Characterization of sugar mixtures utilization by an / Escherichia coli mutant devoid of the phosphotransferase system. Appl Microbiol Biotechnol 57(1-):186-91
    12. Ikeda M, Mizuno Y, Awane S, Hayashi M, Mitsuhashi S, Takeno S (2011) Identification and application of a different glucose uptake system that functions as an alternative to the phosphotransferase system in / Corynebacterium glutamicum. Appl Microbiol Biotechnol 90:1443-451 CrossRef
    13. Inui M, Kawaguchi H, Murakami S, Alain AV, Yukawa H (2004) Metabolic engineering of / Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions. J Mol Microbiol Biotechnol 8(4):243-54 CrossRef
    14. Jakoby M, Ngouoto-Nkili CE, Burkovski A (1999) Construction and application of new / Corynebacterium glutamicum vectors. Biotechnol Tech 13:437-41 CrossRef
    15. Kawaguchi H, Vertès AA, Okino S, Inui M, Yukawa H (2006) Engineering of a xylose metabolic pathway in / Corynebacterium glutamicum. Appl Environ Microbiol 72(5):3418-428 CrossRef
    16. Kotrba P, Inui M, Yukawa H (2001) The ptsI gene encoding enzyme I of the phosphotransferase system of / Corynebacterium glutamicum. Biochem Biophys Res Commun 289(5):1307-313 CrossRef
    17. Krings E, Krumbach K, Bathe B, Kelle R, Wendisch VF, Sahm H, Eggeling L (2006) Characterization of / myo-inositol utilization by / Corynebacterium glutamicum: the stimulon, identification of transporters, and influence on l -lysine formation. J Bacteriol 188(23):8054-061 CrossRef
    18. Lindner SN, Knebel S, Pallerla SR, Schoberth SM, Wendisch VF (2010) Cg2091 encodes a polyphosphate/ATP-dependent glucokinase of / Corynebacterium glutamicum. Appl Microbiol Biotechnol 87(2):703-13 CrossRef
    19. Lindner SN, Seibold GM, Henrich A, Kr?mer R, Wendisch VF (2011) Phosphotransferase system-independent glucose utilization in / Corynebacterium glutamicum by inositol permeases and glucokinases. Appl Environ Microbiol 77(11):3571-581 CrossRef
    20. Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF (2013) Accelerated pentose utilization by / Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine. Microb Biotechnol 6(2):131-40 CrossRef
    21. Moon MW, Park SY, Choi SK, Lee JK (2007) The phosphotransferase system of / Corynebacterium glutamicum: features of sugar transport and carbon regulation. J Mol Microbiol Biotechnol 12(1-):43-0 CrossRef
    22. Nichols NN, Dien BS, Bothast RJ (2001) Use of catabolite repression mutants for fermentation of sugar mixtures to ethanol. Appl Microbiol Biotechnol 56(1-):120-25 CrossRef
    23. Oh H, Park Y, Park C (1999) A mutated / PtsG, the glucose transporter, allows uptake of d -ribose. J Biol Chem 274(20):14006-4011 CrossRef
    24. Okino S, Noburyu R, Suda M, Jojima T, Inui M, Yukawa H (2008) An efficient succinic acid production process in a metabolically engineered / Corynebacterium glutamicum strain. Appl Microbiol Biotechnol 81(3):459-64 CrossRef
    25. Okino S, Inui M, Yukawa H (2005) Production of organic acids by / Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 68(4):475-80 CrossRef
    26. Okino S, Suda M, Fujikura K, Inui M, Yukawa H (2008) Production of d -lactic acid by / Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 78(3):449-54 CrossRef
    27. Parche S, Burkovski A, Sprenger GA, Weil B, Kr?mer R, Titgemeyer F (2001) / Corynebacterium glutamicum: a dissection of the PTS. J Mol Microbiol Biotechnol 3(3):423-28
    28. Plumbridge J (1998) Control of the expression of the manXYZ operon in / Escherichia coli: Mlc is a negative regulator of the mannose PTS. Mol Microbiol 27(2):369-80 CrossRef
    29. Postma PW (1976) Involvement of the phosphotransferase system in galactose transport in / Salmonella typhimurium. FEBS Lett 61:49-3 CrossRef
    30. Postma PW, Lengeler JW (1985) Phosphoenolpyruvate: carbohydrate phosphotransfease system of bacteria. Microbiol Rev 49(3):232-69
    31. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor
    32. Sasaki M, Jojima T, Inui M, Yukawa H (2010) Xylitol production by recombinant / Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 86(4):1057-066 CrossRef
    33. Sasaki M, Jojima T, Kawaguchi H, Inui M, Yukawa H (2009) Engineering of pentose transport in / Corynebacterium glutamicum to improve simultaneous utilization of mixed sugars. Appl Microbiol Biotechnol 85(1):105-15 CrossRef
    34. Sasaki M, Teramoto H, Inui M, Yukawa H (2011) Identification of mannose uptake and catabolism genes in / Corynebacterium glutamicum and genetic engineering for simultaneous utilization of mannose and glucose. Appl Microbiol Biotechnol 89(6):1905-916 CrossRef
    35. Sch?fer A, Tauch A, J?ger W, Kalinowski J, Thierbach G, Pühler A (1994) Small mobilizable multi-purpose cloning vectors derived from the / Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of / Corynebacterium glutamicum. Gene 145(1):69-3
    36. ter Kuile BH, Cook M (1994) The kinetics of facilitated diffusion followed by enzymatic conversion of the substrate. Biochim Biophys Acta 1193(2):235-39 CrossRef
    37. Tao H, Gonzalez R, Martinez A, Rodriguez M, Ingram LO, Preston JF, Shanmugam KT (2001) Engineering a homo-ethanol pathway in / Escherichia coli: increased glycolytic flux and levels of expression of glycolytic genes during xylose fermentation. J Bacteriol 183(10):2979-988 CrossRef
    38. Uhde A, Youn JW, Maeda T, Clermont L, Matano C, Kr?mer R, Wendisch VF, Seibold GM, Marin K (2013) Glucosamine as carbon source for amino acid-producing / Corynebacterium glutamicum. Appl Microbiol Biotechnol 97(4):1679-687 CrossRef
    39. Van der Rest ME, Lange C, Molenaar D (1999) A heat shock following electroporation induces highly efficient transformation of / Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl Microbiol Biotechnol 52(4):541-45 CrossRef
    40. Wang C, Zhang HL, Cai H, Zhou ZH, Chen YL, Chen YL, Ouyang PK (2013) Succinic acid production from corn cob hydrolysates by genetically engineered / Corynebacterium glutamicum. Appl Biochem Biotechnol. doi:10.1007/s12010-013-0539-x
    41. Wyman CE (1999) Production of low cost sugars from biomass: progress, opportunities, and challenges. In: Overend RP, Chornet E (eds) Biomass: a growth opportunity in green energy and valueadded products, vol 1. Pergamon Press, Oxford, pp 867-72
    42. Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56(1-):17-4 CrossRef
  • 作者单位:Chen Wang (1)
    Heng Cai (1)
    Zhihui Zhou (1)
    Kai Zhang (1)
    Zhongjun Chen (2)
    Yali Chen (1)
    Honggui Wan (1)
    Pingkai Ouyang (1)

    1. College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, 211816, China
    2. College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
  • ISSN:1476-5535
文摘
Corynebacterium glutamicum strains NC-2 were able to grow on xylose as sole carbon sources in our previous work. Nevertheless, it exhibited the major shortcoming that the xylose consumption was repressed in the presence of glucose. So far, regarding C. glutamicum, there are a number of reports on ptsG gene, the glucose-specific transporter, involved in glucose metabolism. Recently, we found ptsG had influence on xylose utilization and investigated the ptsG gene in response to xylose utilization in C. glutamicum with the aim to improve xylose consumption and simultaneously utilized glucose and xylose. The ptsG-deficient mutant could grow on xylose, while exhibiting noticeably reduced growth on xylose as sole carbon source. A mutant deficient in ptsH, a general PTS gene, exhibited a similar phenomenon. When complementing ptsG gene, the mutant ΔptsG-ptsG restored the ability to grow on xylose similarly to NC-2. These indicate that ptsG gene is not only essential for metabolism on glucose but also important in xylose utilization. A ptsG-overexpressing recombinant strain could not accelerate glucose or xylose metabolism. When strains were aerobically cultured in a sugar mixture of glucose and xylose, glucose and xylose could not be utilized simultaneously. Interestingly, the ΔptsG strain could co-utilize glucose and xylose under oxygen-deprived conditions, though the consumption rate of glucose and xylose dramatically declined. It was the first report of ptsG gene in response to xylose utilization in C. glutamicum.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700