An investigation into the swash plate vibration and pressure pulsation of piston pumps based on full fluid-structure interactions
详细信息    查看全文
  • 作者:Xiao-ping Ouyang ; Xu Fang ; Hua-yong Yang
  • 刊名:Journal of Zhejiang University - Science A
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:17
  • 期:3
  • 页码:202-214
  • 全文大小:1,097 KB
  • 参考文献:Abuhaiba, M., Olson, W.W., 2010. Geometric and kinematic modeling of a variable displacement hydraulic bent-axis piston pump. Journal of Computational and Nonlinear Dynamics, 5(4): 041010. http://​dx.​doi.​org/​10.​1115/​1.​4002084CrossRef
    Bahr, M.K., Svoboda, J., Bhat, R.B., 2003. Vibration analysis of constant power regulated swash plate axial piston pumps. Journal of Sound and Vibration, 259(5): 1225–1236. http://​dx.​doi.​org/​10.​1006/​jsvi.​2002.​5231CrossRef
    Bergada, J.M., Davies, D.L., Kumar, S., et al., 2012. The effect of oil pressure and temperature on barrel film thickness and barrel dynamics of an axial piston pump. Meccanica, 47(3): 639–654. http://​dx.​doi.​org/​10.​1007/​s11012-011-9472-7CrossRef MATH
    Chen, H.X., Chua, P.S., Lim, G.H., 2006. Dynamic vibration analysis of a swash-plate type water hydraulic motor. Mechanism and Machine Theory, 41(5): 487–504. http://​dx.​doi.​org/​10.​1016/​j.​mechmachtheory.​2005.​09.​002CrossRef MATH
    Huang, J., Yan, Z., Quan, L., et al., 2015. Characteristics of delivery pressure in the axial piston pump with combination of variable displacement and variable speed. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 229(7): 599–613. http://​dx.​doi.​org/​10.​1177/​0959651815578967​

Johnston, D.N., Drew, J.E., 1996. Measurement of positive displacement pump flow ripple and impedance. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 210(1): 65–74.
Koralewski, J., 2011. Influence of hydraulic oil viscosity on the volumetric losses in a variable capacity piston pump. Polish Maritime Research, 18(3): 55–65. http://​dx.​doi.​org/​10.​2478/​v10012-011-0018-7CrossRef
Manring, N.D., 2000. The discharge flow ripple of an axialpiston swash-plate type hydrostatic pump. Journal of Dynamic Systems, Measurement, and Control, 122(2): 263–268. http://​dx.​doi.​org/​10.​1115/​1.​482452CrossRef
Manring, N.D., Mehta, V.S., 2011. Physical limitations for the bandwidth frequency of a pressure controlled, axialpiston pump. Journal of Dynamic Systems, Measurement, and Control, 133(6): 061005. http://​dx.​doi.​org/​10.​1115/​1.​4004056CrossRef
Meher, K.K., Rao, A.R., 2006. Optimal foundation design of a vertical pump assembly. Journal of Sound and Vibration, 291(3-5):1269–1277. http://​dx.​doi.​org/​10.​1016/​j.​jsv.​2005.​07.​034CrossRef
Norhirni, M.Z., Hamdi, M., Musa, S.N., et al., 2011. Load and stress analysis for the swash plate of an axial piston pump/motor. Journal of Dynamic Systems, Measurement, and Control, 133(6): 064505. http://​dx.​doi.​org/​10.​1115/​1.​4004578CrossRef
Wang, L., Johnston, D.N., 2009. Narrow-band fluid borne noise attenuation using time-domain online control algorithms in a simple hydraulic system. 7th International Conference on Fluid Power Transmission and Control (ICFP 2009), University of Bath, UK.
Xu, B., Lee, K.M., Song, Y., et al., 2015a. A numerical and experimental investigation of parametric effect on flow ripple. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 299(16): 2939–2951. http://​dx.​doi.​org/​10.​1177/​0954406214564585​

Xu, B., Sun, Y.H., Zhang, J.H., et al., 2015b. A new design method for the transition region of the valve plate for an axial piston pump. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 16(3): 229–240. http://​dx.​doi.​org/​10.​1631/​jzus.​A1400266CrossRef
Yang, H.Y., Pan, M., 2015. Engineering research in fluid power: a review. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 16(6): 427–442. http://​dx.​doi.​org/​10.​1631/​jzus.​A1400284CrossRef
  • 作者单位:Xiao-ping Ouyang (1)
    Xu Fang (1)
    Hua-yong Yang (1)

    1. The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
  • 刊物类别:Engineering
  • 刊物主题:Physics
    Mechanics, Fluids and Thermodynamics
    Chinese Library of Science
  • 出版者:Zhejiang University Press, co-published with Springer
  • ISSN:1862-1775
  • 文摘
    In this paper, dynamic analyses of the swash plate vibration and pressure pulsation of an aircraft piston pump based on fluid-structure interactions (FSIs) are presented. Models of the swash plate piston pumps with three FSIs (named full FSIs and non FSI) are given. The simulation results of the discharge pressures at different rotation speeds in the synthesized pump model and experiments show good agreement. The numerical simulation results of the forces on the swash plate and the flow rate of the outlet chamber are presented and compared. The results of the two models show that the discharge pressure pulsation mostly depends on the kinematic relations of the piston slipper-shoe units (FSI-1), and is almost isolated from the swash plate vibration. The full FSIs simulation shows that the swash plate vibration is strongly influenced by the pressure pulsation through the control actuator mechanism (FSI-2) and the control valve mechanism (FSI-3), but the non FSI model does not show the same result. The full FSIs model is much more accurate in predicting the vibration of the swash plate and the pulsation of the discharge pressure than the non FSI model.

    © 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

    地址:北京市海淀区学院路29号 邮编:100083

    电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700