Degradation of phenolic compounds by the lignocellulose deconstructing thermoacidophilic bacterium Alicyclobacillus Acidocaldarius
详细信息    查看全文
  • 作者:John E. Aston ; William A. Apel ; Brady D. Lee…
  • 关键词:Alicyclobacillus acidocaldarius ; Thermophiles ; Phenolics ; Bioremoval
  • 刊名:Journal of Industrial Microbiology and Biotechnology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:43
  • 期:1
  • 页码:13-23
  • 全文大小:1,276 KB
  • 参考文献:1.Arai H et al (2000) Arrangement and regulation of the genes for meta-pathway enzymes required for degradation of phenol in Comamonas testosteroni TA441. Microbiology 146:1707–1715PubMed CrossRef
    2.Bai Y, Wang J, Zhang Z, Yang P, Shi P, Luo H, Meng K, Huang H, Yao B (2010) A new xylanase from thermoacidophilic Alicyclobacillus sp. A4 with broad-range pH activity and pH stability. J Ind Microbiol Biotechnol 37:187–194PubMed CrossRef
    3.Banyopadhyay S, Soumya H (1998) Briefing paper on forest policy: community stewardship and management. Terracotta Summit
    4.Bhalla A, Bansal N, Kumar S, Bischoff KM, Sani RK (2012) Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes. Bioresour Technol 128:751–759PubMed CrossRef
    5.Blumer-Schuette SE, Brown SD, Sander KB, Bayer EA, Kataeva I, Zurawski JV, Conway JM, Adams MWW, Kelly RM (2014) Thermophilic lignocellulose deconstruction. FEMS Mirobiol Rev 38:393–448CrossRef
    6.Bonoli M, Montanucci M, Toschi TG, Lercker G (2003) Fast separation and determination of tyrosol, hydroxytyrosol and other phenolic compounds in extra-virgin olive oil by capillary zone electrophoresis with ultraviolet-diode array detection. J Chromatogr A 10:163–172CrossRef
    7.Boyd TJ, Carlucci AF (1993) Degradation rates of substituted phenols by natural populations of marine bacteria. Aquat Toxicol 25:71–82CrossRef
    8.Brander S, Mikkelsen JD, Kepp KP (2015) TtMCO: a highly thermostable laccase-like multicopper oxidase from the thermophilic Thermobaculum terrenum. J Mol Cat B Enzym 112:59–65CrossRef
    9.Chandel AK, Singh OV (2011) Weedy lignocellulosic feedstock and microbial metabolic engineering: advancing the generation of ‘biofuel’. Appl Microbiol Biotechnol 89:1289–1303PubMed CrossRef
    10.Collins LD, Daugulis AJ (2000) Biodegradation of phenol at high initial concentrations in two-phase partitioning batch and fed-batch bioreactors. Biotechnol Bioeng 55:155–162CrossRef
    11.Crawford RL (1981) Lignin biodegradation and transformation. Wiley, New York
    12.Dence CW, Lin SY (1992) Introduction. In methods in lignin chemistry. Springer Verlag, New York
    13.Fava F, Armenante PM, Kafkewitz D, Marchetti L (1995) Influence of organic and inorganic growth supplements on the aerobic biodegradation of chlorobenzoic acid. Appl Microbiol Biotechnol 43:171–177PubMed CrossRef
    14.Holladay JA, Bozell JJ, White JF, Johnson D (2007) Top value-added chemicals from biomass volume II-results of screening for potential candidates from biorefinery lignin. Pacific Northwest National Laboratory. PNNL-16983
    15.Juturu V, Wu C (2012) Microbial xylanases: engineering, production and industrial applications. Biotechnol Adv 30:1219–1227PubMed CrossRef
    16.Kalme S, Jadhav S, Jadhav M, Govindwar S (2009) Textile dye degrading laccase from Pseudomonas desmolyticum NCIM 2112. Enzym Microb Technol 44:65–71CrossRef
    17.Lauro B, Rossi M, Moracci M (2006) Characterization of β-glycosidase from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius. Extremophiles 10:301–310PubMed CrossRef
    18.Leonard D, Lindley ND (1998) Carbon and energy flux constraints in continuous cultures of Alcaligenes eutrophus grown on phenol. Microbiology 144:241–248CrossRef
    19.Mahadevaswamy M, Mall ID, Prasad B, Mishra IM (1997) Removal of phenol by adsorption on coal fly ash and activated carbon. Pollut R 16:170–175
    20.Martins LO, Durao P, Vrissos V, Lindley PF (2015) Laccases of prokaryotic origin: enzymes at the interface of protein science and protein technology. Cell Mol Life Sci 72:911–922PubMed CrossRef
    21.Mavromatis K, Sikorski J, Lapidus A, Del Rio TG, Copeland A, Tice H, Cheng JF, Lucas S, Chen F, Nolan M, Bruce D, Goodwin L, Pitluck S, Ivanova N, Ovchinnikova G, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Chain P, Meincke L, Sims D, Chertkov O, Han C, Brettin T, Detter JC, Wahrenburg C, Rohde M, Pukall R, Goker M, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Klenk HP, Kyrpides NC (2010) Complete genome sequence of Alicyclobacillus acidocaldarius type strain (104-IAT. Stand Genomic Sci 2:9–18PubMed PubMedCentral CrossRef
    22.Nikakhtari H, Hill GA (2006) Continuous bioremediation of phenol-polluted air in an external loop airlift bioreactor with a packed bed. J Chem Technol Biotechnol 81:1029–1038CrossRef
    23.Niladevi K, Sukumaran NRK, Prema P (2007) Utilization of rice straw for laccase production by Streptomyces psammoticus in solid-state fermentation. J Ind Microbiol Biotechnol 34:665–674PubMed CrossRef
    24.Paller G, Hommel RK, Kleber HP (1995) Phenol degradation by Acinetobacter calcoaceticus NCIB 8250. J Basic Microbiol 35:325–350PubMed CrossRef
    25.Perlack RD, Wright LL, Turhollow AF, Graham RL, Stokes BJ, Erbach DC (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. ORNL/TM-2005/66; Oak Ridge National Laboratory: Oak Ridge
    26.Prpich GP, Daugulis AJ (2005) Enhanced biodegradation of phenol by a microbial consortium in a solid-liquid two-phase partitioning bioreactor. Biodegradation 16:329–339PubMed CrossRef
    27.Reiss R, Ihssen J, Richter M, Eichhorn E, Schilling B, Thony-Meyer L (2013) Laccase versus laccase-like multi-copper oxidase: a comparative study of similar enzymes with diverse substrate spectra. PLoS One 8:e65633PubMed PubMedCentral CrossRef
    28.Rolfe MD, Rice CJ, Lucchini S, Pin C, Thompson A, Cameron ADS, Alston M, Stringer MF, Betts RP, Baranyi J, Peck MW, Hinton JCD (2012) Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation. J Bacteriol 194:686–701PubMed PubMedCentral CrossRef
    29.Ruijssenaars HJ, Hartmans S (2004) A cloned Bacillus halodurans multicopper oxidase exhibiting alkaline laccase activity. Appl Microbiol Biotechnol 65:177–182PubMed
    30.Ruiz-ordaz N, Ruiz-Lagunez JC, Castanou-Gonzalez JH, Hernandez-Manzano E, Cristiani-Urbina E, Galindez-Mayer J (2001) Phenol biodegradation using a repeated batch culture of Candida tropicalis in a multistage bubble column. Revista Latinoamericana de Microbiogia 43:19–24
    31.Shen B, Hutchinson CR (1993) Tetracenomycin F1 monooxygenase: oxidation of a naphthacenone to a naphthacenequinone in the biosynthesis of tetracenomycin C in Streptomyces glaucescens. Biochemistry 32:6656–6663PubMed CrossRef
    32.Solomon BO, Posten C, Harder MPF, Hecht V, Zilli M, Converti A, Lodi A, DelBorghi M, Ferraiolo G, Deckwer WD (1994) Energetics of Pseudomonas phenol removal from waste gases with a biological cepacia growth in a chemostat with phenol limitation, J. fitter by Pseudomonas putida. Biotechnol Bioeng 60:275–282
    33.ten Have R, Teunissen PJM (2001) Oxidative mechanisms involved in lignin degradation by white-rot fungi. Chem Rev 101:3397–3413PubMed CrossRef
    34.Thompson DN, Apel WA, Thompson VS, Reed DW, Lacey JA (2011) Thermophlic and thermoacidophilic biopolymer-degrading genes and enzymes from Alicyclobacillus acidocaldarius and related organisms, methods. US Patent 8,507,242, 7th July 2011
    35.Thompson DN, Apel WA, Thompson VS, Ward TE (2013) Methods of combined bioprocessing and related microorganisms, thermophilic and/or acidophilic enzymes, and nucleic acids encoding said enzymes. US Patent 8,691,525, 14th Nov 2013
    36.Thompson VS, Thompson DN, Shcaller KD, Apel WA Enzyme and methodology for the treatment of a biomiass. US Patent 7,727,755, 2nd Nov 2005
    37.Ullrich R, Hofrichter M (2007) Enzymatic hydroxylation of aromatic compounds. Cell Mol Life Sci 64:271–293PubMed CrossRef
    38.Whiteley CG, Lee DJ (2006) Enzyme technology and biological remediation. Enzyme Microb Tech 38:291–316CrossRef
    39.Widsten P, Kandelbauer A (2008) Laccase applications in the forest products industry: a review. Enzyme Microb Technol 42:293–307CrossRef
    40.Yamasaki H, Abdel-Ghany SE, Cohu CM, Kobayashi Y, Shikanai T, Pilon M (2007) Regulation of copper homeostasis by micro-RNA in Arabidopsis. J Biol Chem 282:16369–16378PubMed CrossRef
    41.Zambrano JL, Ettayebi K, Maaty WS, Faunce NR, Bothner B, Hardy ME (2011) Rotavirus infection activates the UPR but modulates its activity. Virol J 8:359–372PubMed PubMedCentral CrossRef
    42.Zhang Y, Ju J, Peng H, Gao F, Zhou C, Zeng Y, Xue Y, Henrissat B, Gao GF, Yanhe M (2008) Biochemical and structural characterization of the intracellular mannanase AaManA of Alicyclobacillus acidocaldarius reveals a novel glycoside hydrolase family belonging to Clan GH-A. J Biol Chem 283:31551–31558PubMed CrossRef
  • 作者单位:John E. Aston (1)
    William A. Apel (1)
    Brady D. Lee (2)
    David N. Thompson (1)
    Jeffrey A. Lacey (1)
    Deborah T. Newby (1)
    David. W. Reed (1)
    Vicki S. Thompson (1)

    1. Biological and Chemical Processing Department, Idaho National Laboratory, Idaho Falls, ID, USA
    2. Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Chemistry
    Biotechnology
    Genetic Engineering
    Biochemistry
    Bioinformatics
    Microbiology
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1476-5535
文摘
Alicyclobacillus acidocaldarius, a thermoacidophilic bacterium, has a repertoire of thermo- and acid-stable enzymes that deconstruct lignocellulosic compounds. The work presented here describes the ability of A. acidocaldarius to reduce the concentration of the phenolic compounds: phenol, ferulic acid, ρ-coumaric acid and sinapinic acid during growth conditions. The extent and rate of the removal of these compounds were significantly increased by the presence of micro-molar copper concentrations, suggesting activity by copper oxidases that have been identified in the genome of A. acidocaldarius. Substrate removal kinetics was first order for phenol, ferulic acid, ρ-coumaric acid and sinapinic acid in the presence of 50 μM copper sulfate. In addition, laccase enzyme assays of cellular protein fractions suggested significant activity on a lignin analog between the temperatures of 45 and 90 °C. This work shows the potential for A. acidocaldarius to degrade phenolic compounds, demonstrating potential relevance to biofuel production and other industrial processes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700