Moisture and temperature controls on nitrification differ among ammonia oxidizer communities from three alpine soil habitats
详细信息    查看全文
  • 作者:Brooke B. Osborne ; Jill S. Baron ; Matthew D. Wallenstein
  • 关键词:ammonia ; oxidizing archaea (AOA) ; ammonia ; oxidizing bacteria (AOB) ; global change ; Loch Vale watershed ; nitrification ; thermal adaptation
  • 刊名:Frontiers of Earth Science
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:10
  • 期:1
  • 页码:1-12
  • 全文大小:1,010 KB
  • 参考文献:Alves R J E, Wanek W, Zappe A, Richter A, SvenningMM, Schleper C, Urich T (2013). Nitrification rates in Arctic soils are associated with functionally distinct populations of ammonia-oxidizing archaea. ISME J, 7(8): 1620–1631CrossRef
    Baron J S (1992). Biogeochemistry of a Subalpine Ecosystem: Loch Vale Watershed. New York: Springer-VerlagCrossRef
    Baron J S, Driscoll C T, Stoddard J L, Richer E E (2011). Empirical critical loads of atmospheric nitrogen deposition for nutrient enrichment and acidification of sensitive US lakes. BioScience, 61 (8): 602–613CrossRef
    Baron J S, Rueth H M, Wolfe A M, Nydick K R, Allstott E J, Minear J T, Moraska B (2000). Ecosystem responses to nitrogen deposition in the Colorado Front Range. Ecosystems, 3(4): 352–368CrossRef
    Baron J S, Schmidt T M, Hartman MD (2009). Climate-induced changes in high elevation stream nitrate dynamics. Glob Change Biol, 15(7): 1777–1789CrossRef
    Bieber A J, Williams M W, Johnsson M J, Davinroy T C (1998). Nitrogen transformations in alpine talus fields, Green Lakes Valley, Front Range, Colorado, USA. Arctic and alpine research, 30(3): 266–271CrossRef
    Boyd E S, Lange R K, Mitchell A C, Havig J R, Hamilton T L, Lafrenière M J, Shock E L, Peters J W, Skidmore M (2011). Diversity, abundance, and potential activity of nitrifying and nitratereducing microbial assemblages in a subglacial ecosystem. Appl Environ Microbiol, 77(14): 4778–4787CrossRef
    Brankatschk R, Töwe S, Kleineidam K, Schloter M, Zeyer J (2011). Abundances and potential activities of nitrogen cycling microbial communities along a chronosequence of a glacier forefield. ISME J, 5 (6): 1025–1037CrossRef
    Campbell D H, Kendall C, Chang C C Y, Silva S R, Tonnessen K A (2002). Pathways for nitrate release from an alpine watershed: determination using δ15N and δ18O. Water Resour Res, 38(5): 10-1–10-9
    Cannone N, Diolaiuti G, Guglielmin M, Smiraglia C (2008). Accelerating climate change impacts on alpine glacier forefield ecosystems in the European Alps. Ecol Appl, 18(3): 637–648CrossRef
    Chu H, Grogan P (2010). Soil microbial biomass, nutrient availability and nitrogen mineralization potential among vegetation-types in a low arctic tundra landscape. Plant and Soil, 329(1–2): 411–420CrossRef
    Clow DW (2010). Changes in the timing of snowmelt and streamflow in Colorado: a response to recent warming. J Clim, 23(9): 2293–2306CrossRef
    Delgado-Baquerizo M, Gallardo A, Wallenstein M D, Maestre F T (2013). Vascular plants mediate the effects of aridity and soil properties on ammonia-oxidizing bacteria and archaea. FEMS Microbiol Ecol, 85(2): 273–282CrossRef
    Di H J, Cameron K C, Shen J P, Winefield C S, O’Callaghan M, Bowatte S, He J Z (2010). Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions. FEMS Microbiol Ecol, 72 (3): 386–394CrossRef
    Elser J J, Andersen T, Baron J S, Bergström A K, Jansson M, Kyle M, Nydick K R, Steger L, Hessen D O (2009). Shifts in lake N:P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition. Science, 326(5954): 835–837CrossRef
    Erguder T H, Boon N, Wittebolle L, Marzorati M, Verstraete W (2009). Environmental factors shaping the ecological niches of ammoniaoxidizing archaea. FEMS Microbiol Rev, 33(5): 855–869CrossRef
    Fierer N, Schimel J P, Holden P A (2003). Variations in microbial community composition through two soil depth profiles. Soil Biol Biochem, 35(1): 167–176CrossRef
    Firestone M K, Davidson E A (1989). Microbiological basis of NO and N2O production and consumption in soil. In: Andreae M O, Schimel D S, eds. Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere. New York: John Wiley and Sons Ltd, 7–21
    Fisk M C, Schmidt S K (1996). Microbial responses to nitrogen additions in alpine tundra soil. Soil Biol Biochem, 28(6): 751–755CrossRef
    Fountain A G, Campbell J L, Schuur E A G, Stammerjohn S E, Williams M W, Ducklow H W (2012). The disappearing cryosphere: impacts and ecosystem responses to rapid cryosphere loss. BioScience, 62(4): 405–415CrossRef
    Francis C A, Roberts K J, Beman J M, Santoro A E, Oakley B B (2005). Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA, 102 (41): 14683–14688CrossRef
    Gee G W, Bauder J W (1986). Particle-size analysis. In: Klute A, ed. Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. Madison: ASA and SSSA Publ, 383–411
    Gubry-Rangin C, Hai B, Quince C, Engel M, Thomson B C, James P, Schloter M, Griffiths R I, Prosser J I, Nicol G W (2011). Niche specialization of terrestrial archaeal ammonia oxidizers. Proc Natl Acad Sci USA, 108(52): 21206–21211CrossRef
    Hannah D M, Brown L E, Milner A M, Gurnell A M, Mc Gregor G R, Petts G E, Smith B P G, Snook D L (2007). Integrating climatehydrology-ecology for alpine river systems. Aquatic Conservation: Marine and Freshwater Ecosystems, 17(6): 636–656CrossRef
    Hatzenpichler R (2012). Diversity, physiology, and niche differentiation of ammonia-oxidizing archaea. Appl Environ Microbiol, 78(21): 7501–7510CrossRef
    Huber E, Bell T L, Simpson R R, Adams M A (2011). Relationships among micoclimate, edaphic conditions, vegetarian distribution and soil nitrogen dynamics on the Bogong High Plains, Australia. Austral Ecology, 36(2): 142–152CrossRef
    IPCC (2014). Climate Change, Adaptation, and Vulnerability
    Kattelmann R, Elder K (1991). Hydrologic characteristics and water balance of an alpine basin in the Sierra Nevada.Water Resour Res, 27 (7): 1553–1562
    Kirkham D, Bartholomew W V (1954). Equations for following nutrient transformations in soil, utilizing tracer data. Soil Sci Soc Am J, 18(1): 33–34CrossRef
    Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol G W, Prosser J I, Schuster S C, Schleper C (2006). Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature, 442(7104): 806–809CrossRef
    Linn D M, Doran JW(1984). Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Sci Soc Am J, 48(6): 1267–1272CrossRef
    Lipson D A, Monson R K, Schmidt S K, Weintraub M N (2009). The trade-off between growth rate and yield in microbial communities and the consequences for under-snow soil respiration in a high elevation coniferous forest. Biogeochemistry, 95(1): 23–25CrossRef
    Makarov M I, Glaser B, Zech W, Malysheva T I, Bulatnikova I V, Volkov A V (2003). Nitrogen dynamics in alpine ecosystems of the northern Caucasus. Plant and Soil, 256(2): 389–402CrossRef
    Martens-Habbena W, Berube P M, Urakawa H, de la Torre J R, Stahl D A (2009). Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature, 461(7266): 976–979CrossRef
    Miller A E, Schimel J P, Sickman J O, Meixner T, Doyle A P, Melack J M (2007). Mineralization responses at near-zero temperatures in three alpine soils. Biogeochemistry, 84(3): 233–245CrossRef
    Morris K H, Mast M A, Clow D W, Wetherbee G A, Baron J S, Taipale C, Gay D, Richer E (2012). 2010 monitoring and tracking wet nitrogen deposition in Rocky Mountain National Park. National Park Service Natural Resource Report, 34
    Ohtonen R, Fritze H, Pennanen T, Jumpponen A, Trappe J (1999). Ecosystem properties and microbial community changes in primary succession on a glacier forefront. Oecologia, 119(2): 239–246CrossRef
    Parton WJ, Mosier A R, Ojima D S, Valentine D W, Schimel D S, Weier K, Kulmala A E (1996). Generalized model for N2 and N2O production from nitrification and denitrification. Global Biogeochem Cycles, 10(3): 401–412CrossRef
    Prosser J I, Nicol G W (2008). Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environ Microbiol, 10(11): 2931–2941CrossRef
    Rango A, van Katwijk V F (1990). Climate change effects on the snowmelt hydrology of western North American mountain basins. Geoscience and Remote Sensing. IEEE Transactions, 28(5): 970–974
    Rotthauwe J H, Witzel K P, Liesack W (1997). The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol, 63(12): 4704–4712
    Seastedt T R, Bowman W D, Caine T N, McKnight D, Townsend A, Williams M W (2004). The landscape continuum: a model for highelevation ecosystems. BioScience, 54(2): 111–121CrossRef
    Sickman J O, Leydecker A L, Chang C C Y, Kendall C, Melack J M, Lucero D M, Schimel J (2003). Mechanisms underlying export of N from high-elevation catchments during seasonal transitions. Biogeochemistry, 64(1): 1–24CrossRef
    Stark J M, Hart S C (1996). Diffusion technique for preparing salt solutions, Kjeldahl digests, and persulfate digests for nitrogen-15 analysis. Soil Sci Soc Am J, 60(6): 1846–1855CrossRef
    Sun G, Luo P, Wu N, Qiu P F, Gao Y H, Chen H, Shi F S (2009). Stellera chamaejasme L. increases soil N availability, turnover rates and microbial biomass in an alpine meadow ecosystem on the eastern Tibetan Plateau of China. Soil Biology & Biochemistry, 41(1): 86–91CrossRef
    Tai X S, Mao W L, Liu G X, Chen T, Zhang W, Wu X K, Long H Z, Zhang B G, Gao T P (2014). Distribution of ammonia oxidizers in relation to vegetation characteristics in the Qilian Mountains, northwestern China. Biogeosciences Discuss, 11(4): 5123–5146CrossRef
    Valentine D L (2007). Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nat Rev Microbiol, 5(4): 316–323CrossRef
    Waldrop M P, Firestone M K (2006). Seasonal dynamics of microbial community composition and function in oak canopy and open grassland soils. Microb Ecol, 52(3): 470–479CrossRef
    Wallenstein M D, Hall E K (2012). A trait-based framework for predicting when and where microbial adaptation to climate change will affect ecosystem functioning. Biogeochemistry, 109(1–3): 35–47CrossRef
    Yao H, Gao Y, Nicol G W, Campbell C D, Prosser J I, Zhang L, Han W, Singh B K (2011). Links between ammonia oxidizer community structure, abundance, and nitrification potential in acidic soils. Appl Environ Microbiol, 77(13): 4618–4625CrossRef
  • 作者单位:Brooke B. Osborne (1) (2)
    Jill S. Baron (1) (3)
    Matthew D. Wallenstein (1) (4)

    1. Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, 80523, USA
    2. Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, 02912, USA
    3. U.S. Geological Survey Fort Collins Science Center, Fort Collins, CO, 80526, USA
    4. Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO, 80523, USA
  • 刊物主题:Earth Sciences, general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:2095-0209
文摘
Climate change is altering the timing and magnitude of biogeochemical fluxes in many highelevation ecosystems. The consequent changes in alpine nitrification rates have the potential to influence ecosystem scale responses. In order to better understand how changing temperature and moisture conditions may influence ammonia oxidizers and nitrification activity, we conducted laboratory incubations on soils collected in a Colorado watershed from three alpine habitats (glacial outwash, talus, and meadow). We found that bacteria, not archaea, dominated all ammonia oxidizer communities. Nitrification increased with moisture in all soils and under all temperature treatments. However, temperature was not correlated with nitrification rates in all soils. Site-specific temperature trends suggest the development of generalist ammonia oxidzer communities in soils with greater in situ temperature fluctuations and specialists in soils with more steady temperature regimes. Rapidly increasing temperatures and changing soil moisture conditions could explain recent observations of increased nitrate production in some alpine soils. Keywords ammonia-oxidizing archaea (AOA) ammonia- oxidizing bacteria (AOB) global change Loch Vale watershed nitrification thermal adaptation

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700