Sufficient conditions of Rayleigh-Taylor stability and instability in equatorial ionosphere
详细信息    查看全文
  • 作者:Sicheng Wang ; Sixun Huang
  • 关键词:Rayleigh ; Taylor (R ; T) instability ; sufficient condition ; equatorial ionosphere ; variational approach ; O361.5 ; P352 ; O29 ; 76E25 ; 65N25
  • 刊名:Applied Mathematics and Mechanics
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:37
  • 期:2
  • 页码:181-192
  • 全文大小:478 KB
  • 参考文献:[1]Woodman, R. F. Spread F—an old equatorial aeronomy problem finally resolved? Annales Geophysicae, 27, 1915–1934 (2009)CrossRef
    [2]Kelley, M. C. The Earth’s Ionosphere: Plasma Physics and Electrodynamics, 2nd ed., Elsevier, London (2009)
    [3]Huang, C. S., Le, G., de La Beaujardiere, O., Roddy, P. A., Hunton, D. E., Pfaff, R. F., and Hairston, M. R. Relationship between plasma bubbles and density enhancements: observations and interpretation. Journal of Geophysical Research: Space Physics, 119, 1325–1336 (2014)
    [4]Carter, B. A., Yizengaw, E., Retterer, J. M., Francis, M., Terkildsen, M., Marshall, R., Norman, R., and Zhang, K. An analysis of the quiet time day-to-day variability in the formation of postsunset equatorial plasma bubbles in the Southeast Asian region. Journal of Geophysical Research: Space Physics, 119, 3206–3223 (2014)
    [5]Rayleigh, L. On the stability or instability of certain fluid motions. Proceedings of London Mathematical Society, 11, 57–70 (1880)MathSciNet
    [6]Fjortoft, R. Application of integral theorems in deriving criteria of stability for laminar flows and for the baroclinic circular vortex. Geofys. Publ. Norske Vid.- Akad. Oslo, 17, 1–52 (1950)MathSciNet
    [7]Howard, L. N. Note on a paper of John W. Miles. Journal of Fluid Mechanics, 10, 509–512 (1961)MathSciNet CrossRef
    [8]Drazin, P. D. and Reid, W. H. Hydrodynamics Stability, Cambridge University Press, Cambridge (1981)
    [9]Yi, J. X. Fluid Dynamics (in Chinese), Higher Education Press, Beijing (1982)
    [10]Zhao, G. F. and Zhou, H. Weakly nonlinear theory versus theory of secondary instability for plane poiseuille flow. Applied Mathematics and Mechanics (English Edition), 9(7), 617–623 (1988) DOI 10.1007/BF02465691CrossRef
    [11]Xiong, J. G., Yi, F., and Li, J. The influence of topography on the nonlinear interaction of Rossby waves in the barotropic atmosphere. Applied Mathematics and Mechanics (English Edition), 15(6), 585–594 (1994) DOI 10.1007/BF02450772MathSciNet CrossRef
    [12]Zhang, G., Xiang, J., and Li, D. H. Nonlinear saturation of baraclinic instability in the generalized Phillips model I: the upper bound on the evolution of disturbance to the nonlinearly. Applied Mathematics and Mechanics (English Edition), 23(1), 79–88 (2002) DOI 10.1007/BF02437733MathSciNet CrossRef
    [13]Zeytounian, R. K. Theory and Applications of Nonviscous Fluid Flows, Springer, Berlin (2002)CrossRef
    [14]Huang, S. X. and Wu, R. S. Methods of Mathematical Physics in Atmospheric Science (in Chinese), 3rd ed., China Meteorological Press, Beijing (2011)
    [15]Ossakow, S. L., Zalesak, S. T., McDonald, B. E., and Chaturvedi, P. K. Nonlinear equatorial spread F: dependence on altitude of the F peak and bottomside background electron density gradient scale length. Journal of Geophysical Research, 84, 17–29 (1979)CrossRef
    [16]Mendillo, M., Baumgardner, J., Pi, X., Sultan, P. J., and Tsunoda R. Onset conditions for equatorial spread F. Journal of Geophysical Research, 97, 13865–13876 (1992)CrossRef
    [17]Huang, C. S., Kelley, M. C., and Hysell, D. L. Nonlinear Rayleigh-Taylor instabilities, atmospheric gravity waves and equatorial spread F. Journal of Geophysical Research, 98, 15631–15642 (1993)CrossRef
    [18]Sultan, P. J. Linear theory and modeling of Rayleigh-Taylor instability leading to the occurrence of equatorial spread F. Journal of Geophysical Research, 101, 26875–26891 (1996)CrossRef
    [19]Rappaport, H. L. Field line integration and localized modes in the equatorial spread F. Journal of Geophysical Research, 101, 24545–24551 (1996)CrossRef
    [20]Migliuolo, S. Nonlocal dynamics of the collisional Rayleigh-Taylor instability: application to the equatorial spread F. Journal of Geophysical Research, 101, 10975–10984 (1996)CrossRef
    [21]Basu, B. On the linear theory of equatorial plasma instability: comparison of different descriptions. Journal of Geophysical Research, 107, 18-1–18-10 (2002)
    [22]Chakrabarti, N. and Lakhina, G. S. Collisional Rayleigh-Taylor instability and shear-flow in equatorial spread-F plasma. Annales Geophysicae, 21, 1153–1157 (2003)CrossRef
    [23]Sekar, R. Plasma instabilities and their simulations in the equatorial F region: recent results. Space Science Reviews, 107(1-2), 251–262 (2003)CrossRef
    [24]Lee, C. C. Examine the local linear growth rate of collisional Rayleigh-Taylor instability during solar maximum. Journal of Geophysical Research, 111, A11313 (2006)CrossRef
    [25]Aveiro, H. C. and Huba, J. D. Equatorial spread F studies using SAMI3 with two-dimensional and three-dimensional electrostatics. Annales Geophysicae, 31, 2157–2162 (2013)CrossRef
    [26]Huba, J. D., Bernhardt, P. A., Ossakow, S. L., and Zalesak, S. T. The Rayleigh-Taylor instability is not damped by recombination in the F region. Journal of Geophysical Research, 101, 24553–24556 (1996)CrossRef
    [27]Keskinen, M. J., Ossakow, S. L., and Fejer, B. G. Three-dimensional nonlinear evolution of equatorial ionospheric spread-F bubbles. Geophysical Research Letters, 30, 1855–1858 (2003)CrossRef
    [28]Scannapieco, A. J. and Ossakow, S. L. Nonlinear equatorial spread F. Geophysical Research Letters, 3, 451–454 (1976)CrossRef
    [29]Zalesak, S. T. and Ossakow, S. L. Nonlinear equatorial spread F: spatially large bubbles resulting from large horizontal scale initial perturbations. Journal of Geophysical Research, 85, 2131–2142 (1980)CrossRef
    [30]Basu, B. Nonlinear saturation of Rayleigh-Taylor instability in the presence of time-dependent equilibrium. Journal of Geophysical Research, 104(A4), 6859–6866 (1999)CrossRef
    [31]Xie, H. and Xiao, Z. Numerical simulation of spread-F in low and mid-latitudes (in Chinese). Chinese Journal of Geophysics, 36(1), 18–26 (1993)
    [32]Picone, J. M., Hedin, A. E., Drob, D. P., and Aikin, A. C. NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. Journal of Geophysical Research, 107, 15-1–15-16 (2002)
    [33]Bilitza, D. and Reinisch, B. W. International Reference Ionosphere 2007: improvements and new parameters. Advances in Space Research, 42, 599–609 (2008)CrossRef
    [34]Zalesak, S. T. and Ossakow, S. L. Nonlinear equatorial spread F: the effect of neutral winds and background Pedersen conductivity. Journal of Geophysical Research, 87, 151–166 (1982)CrossRef
    [35]Chapagain, N. P., Fisher, D. J., Meriwether, J. W., Chau, J. L., and Makela, J. J. Comparison of zonal neutral winds with equatorial plasma bubble and plasma drift velocities. Journal of Geophysical Research: Space Physics, 118, 1802–1812 (2013)
    [36]Kudeki, E., Akgiray, A., Milla, M., Chau, J. L., and Hysell, D. L. Equatorial spread-F initiation: posts-sunset vortex, thermospheric winds, gravity waves. Journal of Atmospheric and Solar- Terrestrial Physics, 69, 2416–2427 (2007)CrossRef
    [37]Sekar, R. and Raghavarao, R. Role of vertical winds on the Rayleigh-Taylor mode instabilities of the night time equatorial ionosphere. Journal of Atmospheric and Terrestrial Physics, 49, 981–985 (1987)CrossRef
    [38]Raghavarao, R., Suhasini, R., Mayr, H. G., Hoegy, W. R., and Wharton, L. E. Equatorial spread-F (ESF) and vertical winds. Journal of Atmospheric and Solar-Terrestrial Physics, 61, 607–617 (1999)CrossRef
    [39]Sekar, R., Suhasini, R., and Raghavarao, R. Effects of vertical winds and electric fields in the nonlinear evolution of equatorial spread-F. Journal of Geophysical Research, 99, 2205–2213 (1994)CrossRef
    [40]Raghavarao, R., Sekar, R., and Suhasini, R. Non-linear numerical simulation of equatorial spread-F—effects of winds and electric fields. Advances in Space Research, 12, 227–230 (1992)CrossRef
    [41]McClure, J. P., Hanson, W. B., and Hoffman, J. H. Plasma bubbles and irregularities in the equatorial ionosphere. Journal of Geophysical Research, 82, 2650–2656 (1977)CrossRef
  • 作者单位:Sicheng Wang (1)
    Sixun Huang (1) (2)

    1. Institute of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing, 211101, China
    2. State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, 310012, China
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Applications of Mathematics
    Mechanics
    Mathematical Modeling and IndustrialMathematics
    Chinese Library of Science
  • 出版者:Shanghai University, in co-publication with Springer
  • ISSN:1573-2754
文摘
Rayleigh-Taylor (R-T) instability is known as the fundamental mechanism of equatorial plasma bubbles (EPBs). However, the sufficient conditions of R-T instability and stability have not yet been derived. In the present paper, the sufficient conditions of R-T stability and instability are preliminarily derived. Linear equations for small perturbation are first obtained from the electron/ion continuity equations, momentum equations, and the current continuity equation in the equatorial ionosphere. The linear equations can be casted as an eigenvalue equation using a normal mode method. The eigenvalue equation is a variable coefficient linear equation that can be solved using a variational approach. With this approach, the sufficient conditions can be obtained as follows: if the minimum systematic eigenvalue is greater than one, the ionosphere is R-T unstable; while if the maximum systematic eigenvalue is less than one, the ionosphere is R-T stable. An approximate numerical method for obtaining the systematic eigenvalues is introduced, and the R-T stable/unstable areas are calculated. Numerical experiments are designed to validate the sufficient conditions. The results agree with the derived sufficient conditions. Keywords Rayleigh-Taylor (R-T) instability sufficient condition equatorial ionosphere variational approach

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700