Acetate Reduces PGE2 Release and Modulates Phospholipase and Cyclooxygenase Levels in Neuroglia Stimulated with Lipopolysaccharide
详细信息    查看全文
  • 作者:Mahmoud L. Soliman (1) <br> Joyce E. Ohm (2) <br> Thad A. Rosenberger (1) <br>
  • 关键词:Phospholipase ; Cyclooxygenase ; Eicosanoid ; Acetate ; Histone acetylation
  • 刊名:Lipids
  • 出版年:2013
  • 出版时间:July 2013
  • 年:2013
  • 卷:48
  • 期:7
  • 页码:651-662
  • 全文大小:704KB
  • 参考文献:1. Arun P, Madhavarao CN, Moffett JR, Hamilton K, Grunberg NE, Ariyannur PS, Gahl WA, Anikster Y, Mog S, Hallows WC, Denu JM, Namboodiri AM (2010) Metabolic acetate therapy improves phenotype in the tremor rat model of Canavan disease. J Inherit Metab Dis 33:195鈥?10 CrossRef <br> 2. Arun P, Ariyannur PS, Moffett JR, Xing G, Hamilton K, Grunberg NE, Ives JA, Namboodiri AM (2010) Metabolic acetate therapy for the treatment of traumatic brain injury. J Neurotrauma 27:293鈥?98 CrossRef <br> 3. Reisenauer CJ, Bhatt DP, Mitteness DJ, Slanczka ER, Gienger HM, Watt JA, Rosenberger TA (2011) Acetate supplementation attenuates lipopolysaccharide-induced neuroinflammation. J Neurochem 117:264鈥?74 CrossRef <br> 4. Brissette CA, Houdek HM, Floden AM, Rosenberger TA (2012) Acetate supplementation reduces microglia activation and brain interleukin-1尾 levels in a rat model of Lyme neuroborreliosis. J Neuroinflammation 9:249 CrossRef <br> 5. Bhatt DP, Houdek HM, Watt JA, Rosenberger TA (2013) Acetate supplementation increases brain phosphocreatine and reduces AMP levels with no effect on mitochondrial biogenesis. Neurochem Int 62:296鈥?05 CrossRef <br> 6. Soliman ML, Rosenberger TA (2011) Acetate supplementation increases brain histone acetylation and inhibits histone deacetylase activity and expression. Mol Cell Biochem 352:173鈥?80 CrossRef <br> 7. Soliman ML, Smith MD, Houdek HM, Rosenberger TA (2012) Acetate supplementation modulates brain histone acetylation and decreases interleukin-1beta expression in a rat model of neuroinflammation. J Neuroinflammation 9:51 CrossRef <br> 8. Soliman ML, Puig KL, Combs CK, Rosenberger TA (2012) Acetate reduces microglia inflammatory signaling in vitro. J Neurochem 123:555鈥?67 CrossRef <br> 9. Soliman ML, Combs CK, Rosenberger TA (2013) Modulation of inflammatory cytokines and mitogen-activated protein kinases by acetate in primary astrocytes. J Neuroimmune Pharmacol 8:287鈥?00 CrossRef <br> 10. Lima IV, Bastos LF, Limborco-Filho M, Fiebich BL, de Oliveira AC (2012) Role of prostaglandins in neuroinflammatory and neurodegenerative diseases. Mediators Inflamm 2012:946813 CrossRef <br> 11. Phillis JW, O鈥橰egan MH (2004) A potentially critical role of phospholipases in central nervous system ischemic, traumatic, and neurodegenerative disorders. Brain Res Brain Res Rev 44:13鈥?7 brainresrev.2003.10.002">CrossRef <br> 12. Farooqui AA, Yang HC, Rosenberger TA, Horrocks LA (1997) Phospholipase Ab class="a-plus-plus">2b> and its role in brain tissue. J Neurochem 69:889鈥?01 CrossRef <br> 13. Dennis EA (1994) Diversity of group types, regulation, and function of phospholipase Ab class="a-plus-plus">2b>. J Biol Chem 269:13057鈥?3060 <br> 14. Balboa MA, Varela-Nieto I, Killermann Lucas K, Dennis EA (2002) Expression and function of phospholipase A2 in brain. FEBS Lett 531:12鈥?7 CrossRef <br> 15. Smith WL, DeWitt DL, Garavito RM (2000) Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem 69:145鈥?82 biochem.69.1.145">CrossRef <br> 16. Sun GY, Shelat PB, Jensen MB, He Y, Sun AY, Simonyi A (2010) Phospholipases A2 and inflammatory responses in the central nervous system. Neuromolecular Med 12:133鈥?48 CrossRef <br> 17. Fujimori Y, Murakami M, Kim DK, Hara S, Takayama K, Kudo I, Inoue K (1992) Immunochemical detection of arachidonoyl-preferential phospholipase A2. J Biochem 111:54鈥?0 <br> 18. Lauritzen I, Heurteaux C, Lazdunski M (1994) Expression of group II phospholipase A2 in rat brain after severe forebrain ischemia and in endotoxic shock. Brain Res 651:353鈥?56 CrossRef <br> 19. Farooqui AA, Horrocks LA (2005) Signaling and interplay mediated by phospholipases A2, C, and D in LA-N-1 cell nuclei. Reprod Nutr Dev 45:613鈥?31 CrossRef <br> 20. Grinberg S, Hasko G, Wu D, Leibovich SJ (2009) Suppression of PLCbeta2 by endotoxin plays a role in the adenosine A(2A) receptor-mediated switch of macrophages from an inflammatory to an angiogenic phenotype. Am J Pathol 175:2439鈥?453 CrossRef <br> 21. Adibhatla RM, Hatcher JF (2007) Secretory phospholipase A2 IIA is up-regulated by TNF-alpha and IL-1alpha/beta after transient focal cerebral ischemia in rat. Brain Res 1134:199鈥?05 brainres.2006.11.080">CrossRef <br> 22. Hiller G, Sundler R (1999) Activation of arachidonate release and cytosolic phospholipase A2 via extracellular signal-regulated kinase and p38 mitogen-activated protein kinase in macrophages stimulated by bacteria or zymosan. Cell Signal 11:863鈥?69 CrossRef <br> 23. Kramer RM, Roberts EF, Um SL, Borsch-Haubold AG, Watson SP, Fisher MJ, Jakubowski JA (1996) p38 mitogen-activated protein kinase phosphorylates cytosolic phospholipase A2 (cPLA2) in thrombin-stimulated platelets. Evidence that proline-directed phosphorylation is not required for mobilization of arachidonic acid by cPLA2. J Biol Chem 271:27723鈥?7729 bc.271.37.22915">CrossRef <br> 24. Gorisch SM, Wachsmuth M, Toth KF, Lichter P, Rippe K (2005) Histone acetylation increases chromatin accessibility. J Cell Sci 118:5825鈥?834 CrossRef <br> 25. Anderson JD, Lowary PT, Widom J (2001) Effects of histone acetylation on the equilibrium accessibility of nucleosomal DNA target sites. J Mol Biol 307:977鈥?85 bi.2001.4528">CrossRef <br> 26. Polach KJ, Lowary PT, Widom J (2000) Effects of core histone tail domains on the equilibrium constants for dynamic DNA site accessibility in nucleosomes. J Mol Biol 298:211鈥?23 bi.2000.3644">CrossRef <br> 27. Krajewski WA, Becker PB (1998) Reconstitution of hyperacetylated, DNase I-sensitive chromatin characterized by high conformational flexibility of nucleosomal DNA. Proc Natl Acad Sci U S A 95:1540鈥?545 CrossRef <br> 28. Mu C, Liu H, Zheng GC (2007) The modification and variants of histone. Mol Biol (Mosk) 41:395鈥?07 CrossRef <br> 29. Eberharter A, Becker PB (2002) Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics. EMBO Rep 3:224鈥?29 bo-reports/kvf053">CrossRef <br> 30. Glozak MA, Sengupta N, Zhang X, Seto E (2005) Acetylation and deacetylation of non-histone proteins. Gene 363:15鈥?3 CrossRef <br> 31. Polevoda B, Sherman F (2002) The diversity of acetylated proteins. Genome Biol 3:6.1鈥?.6 b-2002-3-5-reviews0006">CrossRef <br> 32. Kim HJ, Rowe M, Ren M, Hong JS, Chen PS, Chuang DM (2007) Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. J Pharmacol Exp Ther 321:892鈥?01 CrossRef <br> 33. Rouaux C, Panteleeva I, Rene F, Gonzalez de Aguilar JL, Echaniz-Laguna A, Dupuis L, Menger Y, Boutillier AL, Loeffler JP (2007) Sodium valproate exerts neuroprotective effects in vivo through CREB-binding protein-dependent mechanisms but does not improve survival in an amyotrophic lateral sclerosis mouse model. J Neurosci 27:5535鈥?545 CrossRef <br> 34. Zhang B, West EJ, Van KC, Gurkoff GG, Zhou J, Zhang XM, Kozikowski AP, Lyeth BG (2008) HDAC inhibitor increases histone H3 acetylation and reduces microglia inflammatory response following traumatic brain injury in rats. Brain Res 1226:181鈥?91 brainres.2008.05.085">CrossRef <br> 35. Ryu H, Lee J, Olofsson BA, Mwidau A, Dedeoglu A, Escudero M, Flemington E, Azizkhan-Clifford J, Ferrante RJ, Ratan RR (2003) Histone deacetylase inhibitors prevent oxidative neuronal death independent of expanded polyglutamine repeats via an Sp1-dependent pathway. Proc Natl Acad Sci U S A 100:4281鈥?286 CrossRef <br> 36. McCampbell A, Taye AA, Whitty L, Penney E, Steffan JS, Fischbeck KH (2001) Histone deacetylase inhibitors reduce polyglutamine toxicity. Proc Natl Acad Sci U S A 98:15179鈥?5184 CrossRef <br> 37. Steffan JS, Bodai L, Pallos J, Poelman M, McCampbell A, Apostol BL, Kazantsev A, Schmidt E, Zhu YZ, Greenwald M, Kurokawa R, Housman DE, Jackson GR, Marsh JL, Thompson LM (2001) Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 413:739鈥?43 CrossRef <br> 38. Langley B, Gensert JM, Beal MF, Ratan RR (2005) Remodeling chromatin and stress resistance in the central nervous system: histone deacetylase inhibitors as novel and broadly effective neuroprotective agents. Curr Drug Targets CNS Neurol Disord 4:41鈥?0 CrossRef <br> 39. Blanchard F, Chipoy C (2005) Histone deacetylase inhibitors: new drugs for the treatment of inflammatory diseases? Drug Discov Today 10:197鈥?04 CrossRef <br> 40. Adcock IM (2007) HDAC inhibitors as anti-inflammatory agents. Br J Pharmacol 150:829鈥?31 bjp.0707166">CrossRef <br> 41. Dhawan G, Floden AM, Combs CK (2012) Amyloid-beta oligomers stimulate microglia through a tyrosine kinase dependent mechanism. Neurobiol Aging 33:2247鈥?261 biolaging.2011.10.027">CrossRef <br> 42. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41鈥?5 CrossRef <br> 43. Rice JC, Allis CD (2001) Histone methylation versus histone acetylation: new insights into epigenetic regulation. Curr Opin Cell Biol 13:263鈥?73 CrossRef <br> 44. Hein AM, Stutzman DL, Bland ST, Barrientos RM, Watkins LR, Rudy JW, Maier SF (2007) Prostaglandins are necessary and sufficient to induce contextual fear learning impairments after interleukin-1bata injections into the dorsal hippocampus. Neuroscience 150:754鈥?63 CrossRef <br> 45. Sun GY, Xu J, Jensen MD, Yu S, Wood WG, Gonzalez FA, Simonyi A, Sun AY, Weisman GA (2005) Phospholipase A2 in astrocytes: responses to oxidative stress, inflammation, and G protein-coupled receptor agonists. Mol Neurobiol 31:27鈥?1 CrossRef <br> 46. Quan N, Whiteside M, Herkenham M (1998) Cyclooxygenase 2 mRNA expression in rat brain after peripheral injection of lipopolysaccharide. Brain Res 802:189鈥?97 CrossRef <br> 47. Yermakova A, O鈥橞anion MK (2000) Cyclooxygenases in the central nervous system: implications for treatment of neurological disorders. Curr Pharm Des 6:1755鈥?776 CrossRef <br> 48. Teismann P, Tieu K, Choi DK, Wu DC, Naini A, Hunot S, Vila M, Jackson-Lewis V, Przedborski S (2003) Cyclooxygenase-2 is instrumental in Parkinson鈥檚 disease neurodegeneration. Proc Natl Acad Sci U S A 100:5473鈥?478 CrossRef <br> 49. Hein AM, O鈥橞anion MK (2009) Neuroinflammation and memory: the role of prostaglandins. Mol Neurobiol 40:15鈥?2 CrossRef <br> 50. Casolini P, Catalani A, Zuena AR, Angelucci L (2002) Inhibition of COX-2 reduces the age-dependent increase of hippocampal inflammatory markers, corticosterone secretion, and behavioral impairments in the rat. J Neurosci Res 68:337鈥?43 CrossRef <br> 51. Kotilinek LA, Westerman MA, Wang Q, Panizzon K, Lim GP, Simonyi A, Lesne S, Falinska A, Younkin LH, Younkin SG, Rowan M, Cleary J, Wallis RA, Sun GY, Cole G, Frautschy S, Anwyl R, Ashe KH (2008) Cyclooxygenase-2 inhibition improves amyloid-beta-mediated suppression of memory and synaptic plasticity. Brain 131:651鈥?64 brain/awn008">CrossRef <br> 52. Gopez JJ, Yue H, Vasudevan R, Malik AS, Fogelsanger LN, Lewis S, Panikashvili D, Shohami E, Jansen SA, Narayan RK, Strauss KI (2005) Cyclooxygenase-2-specific inhibitor improves functional outcomes, provides neuroprotection, and reduces inflammation in a rat model of traumatic brain injury. Neurosurgery 56:590鈥?04 CrossRef <br> 53. Iadecola C, Niwa K, Nogawa S, Zhao X, Nagayama M, Araki E, Morham S, Ross ME (2001) Reduced susceptibility to ischemic brain injury and N-methyl-D-aspartate-mediated neurotoxicity in cyclooxygenase-2-deficient mice. Proc Natl Acad Sci U S A 98:1294鈥?299 CrossRef <br> 54. Klivenyi P, Kiaei M, Gardian G, Calingasan NY, Beal MF (2004) Additive neuroprotective effects of creatine and cyclooxygenase 2 inhibitors in a transgenic mouse model of amyotrophic lateral sclerosis. J Neurochem 88:576鈥?82 CrossRef <br> 55. Silva PF, Garcia VA, Dornelles Ada S, Silva VK, Maurmann N, Portal BC, Ferreira RD, Piazza FC, Roesler R, Schroder N (2012) Memory impairment induced by brain iron overload is accompanied by reduced H3K9 acetylation and ameliorated by sodium butyrate. Neuroscience 200:42鈥?9 CrossRef <br> 56. Govindarajan N, Agis-Balboa RC, Walter J, Sananbenesi F, Fischer A (2011) Sodium butyrate improves memory function in an Alzheimer鈥檚 disease mouse model when administered at an advanced stage of disease progression. J Alzheimers Dis 26:187鈥?97 <br> 57. Anthonsen MW, Solhaug A, Johansen B (2001) Functional coupling between secretory and cytosolic phospholipase A2 modulates tumor necrosis factor-alpha- and interleukin-1beta-induced NF-kappa B activation. J Biol Chem 276:30527鈥?0536 bc.M008481200">CrossRef <br> 58. Jupp OJ, Vandenabeele P, MacEwan DJ (2003) Distinct regulation of cytosolic phospholipase A2 phosphorylation, translocation, proteolysis and activation by tumour necrosis factor-receptor subtypes. Biochem J 374:453鈥?61 CrossRef <br> 59. Deng WG, Zhu Y, Wu KK (2003) Up-regulation of p300 binding and p50 acetylation in tumor necrosis factor-alpha-induced cyclooxygenase-2 promoter activation. J Biol Chem 278:4770鈥?777 bc.M209286200">CrossRef <br>
  • 作者单位:Mahmoud L. Soliman (1) <br> Joyce E. Ohm (2) <br> Thad A. Rosenberger (1) <br><br>1. Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, 501 North Columbia Road, Room 3742, Grand Forks, ND, 58203, USA <br> 2. Department of Biochemistry and Molecular Biology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, 58203, USA <br>
  • ISSN:1558-9307
文摘
Acetate supplementation attenuates neuroglial activation, increases histone and non-histone protein acetylation, reduces pro-inflammatory cytokine expression, and increases IL-4 transcription in rat models of neuroinflammation and Lyme鈥檚 neuroborreliosis. Because eicosanoid signaling is involved in neuroinflammation, we measured the effect acetate treatment had on phospholipase, cyclooxygenase, and prostaglandin E2b> (PGE2b>) levels in BV-2 microglia and primary astrocytes stimulated with lipopolysaccharide (LPS). In BV-2 microglia, we found that LPS increased the phosphorylation-state of cytosolic phospholipase A2b> (cPLA2b>), reduced the levels of phospholipase C (PLC) 尾1, and increased the levels of cyclooxygenase (Cox)-1 and -2. Acetate treatment returned PLC尾1 and Cox-1 levels to normal, attenuated the increase in Cox-2, but had no effect on cPLA2b> phosphorylation. In primary astrocytes, LPS increased the phosphorylation of cPLA2b> and increased the levels of Cox-1 and Cox-2. Acetate treatment in these cells reduced secretory PLA2b> IIA and PLC尾1 levels as compared to LPS-treatment groups, reversed the increase in cPLA2b> phosphorylation, and returned Cox-1 levels to normal. Acetate treatment reduced PGE2b> release in astrocytes stimulated with LPS to control levels, but did not alter PGE2b> levels in BV-2 microglia. The amount of acetylated H3K9 bound to the promoter regions of Cox-1, Cox-2, IL-1尾 and NF-B p65 genes, but not IL-4 in were increased in BV-2 microglia treated with acetate. These data suggest that acetate treatment can disrupt eicosanoid signaling in neuroglia that may, in part, be the result of altering gene expression due chromatin remodeling as a result of increasing H3K9 acetylation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700