Phenylketonuria: reduced tyrosine brain influx relates to reduced cerebral protein synthesis
详细信息    查看全文
  • 作者:Martijn J de Groot (1) (2)
    Marieke Hoeksma (1) (2)
    Dirk-Jan Reijngoud (2) (3)
    Harold W de Valk (4)
    Anne MJ Paans (5)
    Pieter JJ Sauer (1) (3)
    Francjan J van Spronsen (1) (3)
  • 关键词:Phenylketonuria ; Phenylalanine ; Tyrosine ; Blood–brain barrier ; Cerebral protein synthesis ; Positron emission tomography
  • 刊名:Orphanet Journal of Rare Diseases
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:8
  • 期:1
  • 全文大小:283KB
  • 参考文献:1. Blau N, van Spronsen , Levy HL: Phenylketonuria. / Lancet 2010, 376:1417-427. CrossRef
    2. Huijbregts SC, de Sonneville LM, Licht R, van Spronsen FJ, Verkerk PH, Sergeant JA: Sustained attention and inhibition of cognitive interference in treated phenylketonuria: associations with concurrent and lifetime phenylalanine concentrations. / Neuropsychologia 2002, 40:7-5. CrossRef
    3. Huijbregts SC, de Sonneville LM, van Spronsen FJ, Licht R, Sergeant JA: The neuropsychological profile of early and continuously treated phenylketonuria: orienting, vigilance, and maintenance versus manipulation-functions of working memory. / Neurosci Biobehav Rev 2002, 26:697-12. CrossRef
    4. Channon S, German E, Cassina C, Lee P: Executive functioning, memory, and learning in phenylketonuria. / Neuropsychology 2004, 18:613-20. CrossRef
    5. Channon S, Mockler C, Lee P: Executive functioning and speed of processing in phenylketonuria. / Neuropsychology 2005, 19:679-86. CrossRef
    6. Anderson PJ, Wood SJ, Francis DE, Coleman L, Anderson V, Boneh A: Are neuropsychological impairments in children with early-treated phenylketonuria (PKU) related to white matter abnormalities or elevated phenylalanine levels? / Dev Neuropsychol 2007, 32:645-68. CrossRef
    7. Moyle JJ, Fox AM, Arthur M, Bynevelt M, Burnett JR: Meta-analysis of neuropsychological symptoms of adolescents and adults with PKU. / Neuropsychol Rev 2007, 17:91-01. CrossRef
    8. DeRoche K, Welsh M: Twenty-five years of research on neurocognitive outcomes in early-treated phenylketonuria: intelligence and executive function. / Dev Neuropsychol 2008, 33:474-04. CrossRef
    9. Surtees R, Blau N: The neurochemistry of phenylketonuria. / Eur J Pediatr 2000,159(Suppl 2):109-13. CrossRef
    10. van Spronsen FJ, Hoeksma M, Reijngoud DJ: Brain dysfunction in phenylketonuria: is phenylalanine toxicity the only possible cause? / J Inherit Metab Dis 2009, 32:46-1. CrossRef
    11. de Groot MJ, Hoeksma M, Blau N, Reijngoud DJ, van Spronsen FJ: Pathogenesis of cognitive dysfunction in phenylketonuria: review of hypotheses. / Mol Genet Metab 2010,99(Suppl 1):86-9. j.ymgme.2009.10.016">CrossRef
    12. Rao MS, Jacobson M: / In Developmental Neurobiology, Chapters 2, 5, 8, 9, 10. New York (NY): Kluwer Academic/Plenum Publishers; 2005. CrossRef
    13. Vaillend C, Poirier R, Laroche S: Genes, plasticity and mental retardation. / Behav Brain Res 2008, 192:88-05. j.bbr.2008.01.009">CrossRef
    14. Greer PL, Greenberg ME: From synapse to nucleus: calcium-dependent gene transcription in the control of synapse development and function. / Neuron 2008, 59:846-60. j.neuron.2008.09.002">CrossRef
    15. Paans AM, Pruim J, Smit GP, Visser G, Willemsen AT, Ullrich K: Neurotransmitter positron emission tomographic-studies in adults with phenylketonuria, a pilot study. / Eur J Pediatr 1996,155(Suppl 1):78-1. CrossRef
    16. Hoeksma M, Reijngoud DJ, Pruim J, de Valk HW, Paans AM, van Spronsen FJ: Phenylketonuria: High plasma phenylalanine decreases cerebral protein synthesis. / Mol Genet Metab 2009, 96:177-82. j.ymgme.2008.12.019">CrossRef
    17. Hargreaves KM, Pardridge WM: Neutral amino acid transport at the human blood–brain barrier. / J Biol Chem 1988, 263:19392-9397.
    18. Pardridge WM: Blood–brain barrier carrier-mediated transport and brain metabolism of amino acids. / Neurochem Res 1998, 23:635-44. CrossRef
    19. Smith QR: Transport of glutamate and other amino acids at the blood–brain barrier. / J Nutr 2000,130(Suppl):1016-022.
    20. Oldendorf WH: Saturation of blood brain barrier transport of amino acids in phenylketonuria. / Arch Neurol 1973, 28:45-8. CrossRef
    21. O’Mara M, Oakley A, Br?er S: Mechanism and putative structure of B 0 -like neutral amino acid transporters. / J Membrane Biol 2006, 213:111-18. CrossRef
    22. Oldendorf WH, Sisson BW, Silverstein A: Brain uptake of selenomethionine Se 75. II. Reduced brain uptake of selenomethionine Se 75 in phenylketonuria. / Arch Neurol 1971, 24:524-28. CrossRef
    23. Landvogt C, Mengel E, Bartenstein P, Buchholz HG, Schreckenberger M, Siessmeier T, Scheurich A, Feldmann R, Weglage J, Cumming P, Zepp F, Ullrich K: Reduced cerebral fluoro-L dopamine uptake in adult patients suffering from phenylketonuria. / J Cereb Blood Flow Metab 2008, 28:824-31. j.jcbfm.9600571">CrossRef
    24. van Spronsen FJ: Phenylketonuria: a 21st century perspective. / Nat Rev Endocrinol 2010, 6:509-14. CrossRef
    25. van Spronsen FJ, van Rijn M, Dorgelo B, Hoeksma M, Bosch AM, Mulder MF, de Klerk JBC, de Koning T, Estela Rubio-Gozalbo M, de Vries M, Verkerk PH: Phenylalanine tolerance can already reliably be assessed at the age of 2 years in patients with PKU. / J Inherit Metab Dis 2009, 32:27-1. CrossRef
    26. Ishiwata K, Vaalburg W, Elsinga PH, Paans AM, Woldring MG: Metabolic studies with L-[1- 14 C]-tyrosine for the investigation of a kinetic model to measure protein synthesis rates with PET. / J Nucl Med 1988, 29:524-29.
    27. Willemsen AT, van Waarde A, Paans AM, Pruim J, Luurtsema G, Go KG, Vaalburg W: In vivo protein synthesis rate determination in primary or recurrent brain tumors using L-[1- 11 C]-tyrosine and PET. / J Nucl Med 1995, 36:411-19.
    28. Cumming P, Ase A, Kuwabara H, Gjedde A: [ 3 H]DOPA formed from [ 3 H]tyrosine in living rat brain is not committed to dopamine synthesis. / J Cereb Blood Flow Metab 1998, 18:491-99. CrossRef
    29. Hawkins RA, Huang SC, Barrio JR, Keen RE, Feng D, Mazziotta JC, Phelps ME: Estimation of local cerebral protein synthesis rates with L-[1-1C]leucine and PET: methods, model, and results in animals and humans. / J Cereb Blood Flow Metab 1989, 9:446-60. jcbfm.1989.68">CrossRef
    30. van Spronsen FJ, van Rijn M, van Dijk T, Smit GP, Reijngoud DJ, Berger R, Heymans HS: Plasma phenylalanine and tyrosine responses to different nutritional conditions (fasting/postprandial) in patients with phenylketonuria: effect of sample timing. / Pediatrics 1993, 92:570-73.
    31. Omidi Y, Barar J, Ahmadian S, Heidari HR, Gumbleton M: Characterization and astrocytic modulation of system L transporters in brain microvasculature endothelial cells. / Cell Biochem Funct 2008, 26:381-91. CrossRef
    32. del Pino MM S, Peterson DR, Hawkins RA: Neutral amino acid transport characterization of isolated luminal and abluminal membranes of the blood–brain barrier. / J Biol Chem 1995, 270:14913-4918. jbc.270.25.14913">CrossRef
    33. O’Kane RL, Hawkins RA: Na + -dependent transport of large neutral amino acids occurs at the abluminal membrane of the blood–brain barrier. / Am J Physiol Endocrinol Metab 2003, 285:E1167-E1173.
    34. Johnston MV: Brain plasticity in paediatric neurology. / Eur J Paediatr Neurol 2003, 7:105-13. CrossRef
    35. Aine CJ, Sanfratello L, Adair JC, Knoefel JE, Caprihan A, Stephen JM: Development and decline of memory functions in normal, pathological and healthy successful aging. / Brain Topogr 2011, 24:323-39. CrossRef
    36. Petanjek Z, Juda? M, ?imic G, Rasin MR, Uylings HB, Rakic P, Kostovic I: Extraordinary neoteny of synaptic spines in the human prefrontal cortex. / Proc Natl Acad Sci U S A 2011, 108:13281-3286. CrossRef
    37. Saneyoshi T, Fortin DA, Soderling TR: Regulation of spine and synapse formation by activity-dependent intracellular signaling pathways. / Curr Opin Neurobiol 2010, 20:108-15. j.conb.2009.09.013">CrossRef
  • 作者单位:Martijn J de Groot (1) (2)
    Marieke Hoeksma (1) (2)
    Dirk-Jan Reijngoud (2) (3)
    Harold W de Valk (4)
    Anne MJ Paans (5)
    Pieter JJ Sauer (1) (3)
    Francjan J van Spronsen (1) (3)

    1. Department of Metabolic Diseases, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
    2. Laboratory of Metabolic Diseases, Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
    3. Center for Liver, Digestive and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
    4. Department of Internal Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
    5. Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
文摘
Background In phenylketonuria (PKU), elevated blood phenylalanine (Phe) concentrations are considered to impair transport of large neutral amino acids (LNAAs) from blood to brain. This impairment is believed to underlie cognitive deficits in PKU via different mechanisms, including reduced cerebral protein synthesis. In this study, we investigated the hypothesis that impaired LNAA influx relates to reduced cerebral protein synthesis. Methods Using positron emission tomography, L-[1-11C]-tyrosine (11C-Tyr) brain influx and incorporation into cerebral protein were studied in 16 PKU patients (median age 24, range 16 -47 years), most of whom were early and continuously treated. Data were analyzed by regression analyses, using either 11C-Tyr brain influx or 11C-Tyr cerebral protein incorporation as outcome variable. Predictor variables were baseline plasma Phe concentration, Phe tolerance, age, and 11C-Tyr brain efflux. For the modelling of cerebral protein incorporation, 11C-Tyr brain influx was added as a predictor variable. Results 11C-Tyr brain influx was inversely associated with plasma Phe concentrations (median 512, range 233 -1362 μmol/L; delta adjusted R2=0.571, p=0.013). In addition, 11C-Tyr brain influx was positively associated with 11C-Tyr brain efflux (delta adjusted R2=0.098, p=0.041). Cerebral protein incorporation was positively associated with 11C-Tyr brain influx (adjusted R2=0.567, p<0.001). All additional associations between predictor and outcome variables were statistically nonsignificant. Conclusions Our data favour the hypothesis that an elevated concentration of Phe in blood reduces cerebral protein synthesis by impairing LNAA transport from blood to brain. Considering the importance of cerebral protein synthesis for adequate brain development and functioning, our results support the notion that PKU treatment be continued in adulthood. Future studies investigating the effects of impaired LNAA transport on cerebral protein synthesis in more detail are indicated.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700