Deciphering the role of plant growth-promoting rhizobacteria in the tolerance of the invasive cordgrass Spartina densiflora to physicochemical properties of salt-marsh soils
详细信息    查看全文
  • 作者:E. Mateos-Naranjo ; J. Mesa ; E. Pajuelo ; A. Perez-Martin ; M. A. Caviedes…
  • 关键词:Growth ; Photosynthesis ; 路Plant growth promoting rhizobacteria ; 路Soil physicochemical properties ; Spartina densiflora ; Stomatal conductance
  • 刊名:Plant and Soil
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:394
  • 期:1-2
  • 页码:45-55
  • 全文大小:590 KB
  • 参考文献:Ahemad M, Khan MS (2011) Functional aspects of plant growth promoting rhizobacteria: recent advancements. Insight Microbiol 1:39鈥?4CrossRef
    Andrades-Moreno L, del Castillo I, Parra R, Doukkali B, Redondo-G贸mez S, P茅rez-Palacios P, Caviedes MA, Pajuelo E, Rodr铆guez-Llorente ID (2014) Prospecting metal resistant plant growth promoting rhizobacteria for rhizoremediation of metal contaminated estuaries using Spartina densiflora. Environ Sci Pollut R 21:3713鈥?721CrossRef
    Bharti N, Barnawal D, Awathi A, Yadav A, Kalra A (2014) Plant growth promoting rhizobacteria alleviate salinity induced negative effects on growth, oil content and physiology status in Menthaarvensis. Acta Physiol Plant 36:45鈥?0CrossRef
    Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria(PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327鈥?350CrossRef PubMed
    Bouyoucos GJ (1936) Directions for making mechanical analyses of soil by the hydrometer method. Soil Sci 42:225鈥?29CrossRef
    Boyer JS (1985) Water transport. Annual review of plant physiology and plant. Mol Biol 36:473鈥?16
    Bresson J, Varoquaux F, Bontpart T, Touraine B, Vile D (2013) The PGPR strain Phyllobacteriumbrassicacearum STM196 induces a reproductive delay and physiological changes that result in improved drought tolerance in Arabidopsis. New Phytol 200:558鈥?69CrossRef PubMed
    Burd G, Dixon DG, Glick B (2000) Plant growth promoting bacteria that decreases heavy metal toxicity in plants. Can J Microbiol 46:237鈥?45CrossRef PubMed
    Caslake L, Harris S, Williams C, Waters N (2006) Mercury-resistant bacteria associated with macrophytes from a polluted lake. Water Air Soil Pollut 174:93鈥?05CrossRef
    Chang P, Gerhardt KE, Huang XD, Yu XM, Glick BR, Gerwing PD, Greenberg BM (2014) Plant Growth-Promoting bacteria facilitate the growth of Barley and Oats in salt-impacted soil: implications for phytoremediation of saline soils. Int J Phytoremediation 16:1133鈥?147CrossRef PubMed
    Chookietwattana K, Maneewan K (2012) Selection of efficient salt-tolerant bacteria containing ACC deaminase for promotion of tomato growth under salinity stress. Soil Environ 31:30鈥?6
    de Souza MP, Huang CPA, Chee N, Terry N (1999) Rhizosphere bacteria enhance the accumulation of selenium and mercury in wetland plants. Planta 209:259鈥?63CrossRef PubMed
    Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383鈥?93CrossRef PubMed
    Gururani MA, Upadhyaya CP, Baskar V, Venkatesh J, Nookaraju A, Park SW (2013) Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanumtuberosum through inducing changes in the expression of Ros-scavenging enzymes and improved photosynthetic performance. J Plant Growth Regul 32:245鈥?58CrossRef
    Hoagland D, Arnon DI (1938) The water culture method for growing plants without soil. Cal Agric Exp St Bull 347:1鈥?9
    Li WC, Ye ZH, Wong MH (2007) Effects of bacteria on enhanced metal uptake of the Cd/Zn hyperaccumulating plant, Sedum alfredii. J Exp Bot 58:4173鈥?182CrossRef PubMed
    Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350鈥?82CrossRef
    Mateos-Naranjo E, Redondo-G贸mez S, Silva J, Santos R, Figueroa ME (2007) Effect of prolonged flooding on the invader Spartina densiflora Brong. J Aquat Plant Manage 45:121鈥?23
    Mateos-Naranjo E, Redondo-G贸mez S, Cambroll茅-Silva J, Figueroa ME (2008a) Growth and photosynthetic responses to copper stress of an invasive Cordgrass, Spartina densiflora. Mar Environ Res 66:459鈥?65CrossRef PubMed
    Mateos-Naranjo E, Redondo-G贸mez S, Cambroll茅-Silva J, Luque-Palomo M陋 T, Figueroa ME (2008b) Growth and photosynthetic responses to zinc stress of an invasive Cordgrass, Spartina densiflora. Plant Biol 10:754鈥?62CrossRef PubMed
    Mateos-Naranjo E, Redondo-G贸mez S, Luque CJ, Castellanos EM, Davy AJ, Figueroa ME (2008c) Environmental limitations on recruitment from seed in invasive Spartina densiflora on a southern European salt marsh. Estuar Coast Shelf Sci 79:727鈥?32CrossRef
    Mateos-Naranjo E, Andrades-Moreno L, Redondo-G贸mez S (2011) Comparison of germination, growth, photosynthetic responses and metal uptake between three populations of Spartina densiflora under different soil pollution conditions. Ecotox Environ Safe 74:2040鈥?049CrossRef
    Mateos-Naranjo E, Andrades-Moreno L, Davy AJ (2013) Silicon alleviates deleterious effects of high salinity on the halophytic grass Spartina densiflora. Plant Physiol Biochem 63:115鈥?21CrossRef PubMed
    Maxwell K, Johnson G (2000) Chlorophyll fluorescence a practical guide. J Exp Bot 51:659鈥?68CrossRef PubMed
    Melis A (1999) Photosystem II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo? Trends Plants Sci 4:130鈥?35CrossRef
    Nable RO, Barakiva A, Loneragan JF (1984) Functional manganese requirement and its use a critical value for diagnosis of manganese deficiency in subterranean clover (Trifolium subterraneum L. CV. Seaton Park). Ann Bot-London 54:39鈥?9
    Ono TA, Noguchi T, Inoue Y, Kusunoki M, Matsushita T, Oyanagi H (1992) X-ray detection of the period-four cycling of the manganese cluster in photosynthetic water oxidizing enzyme. Science 258:1335鈥?337
    Patten CL, Glick BR (2002) Role of Pseudomonas putidaindoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795鈥?801PubMed Central CrossRef PubMed
    Rincon A, Valladares F, Gimeno TE, Pueyo JJ (2008) Water stress responses of two Mediterranean tree species influenced by native soil microorganisms andinoculation with a plant growth promoting rhizobacterium. Tree Physiol 28:1693鈥?701CrossRef PubMed
    Ruiz-Sanchez M, Armada E, Munoz Y, Garc铆a de Salamone IE, Aroca R, Ruiz-Lozano JM, Azcon R (2011) Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well watered and drought conditions. J Plant Physiol 168:1031鈥?037CrossRef PubMed
    Tardieu F (2012) Any trait or trait related allele can confer drought tolerance: just design the right drought scenario. J Exp Bot 63:25鈥?1CrossRef PubMed
    Teixeira C, Almeida CMR, da Silva MN, Bordalo AA, Mucha AP (2014) Development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium. Sci Total Environ 493:757鈥?65CrossRef PubMed
    Thompson IP, Bailey MJ, Fenlon JS, Fermor TR, Lilley AK, Lynch JM, McCormack PJ, McQuilken MP, Purdy KJ, Rainey PB, Whipps JM (1993) Quantitative and qualitative seasonal-changes in the microbial community from the phyllosphere of sugar-beet (Beta vulgaris). Plant Soil 150:177鈥?91CrossRef
    Tsavkelova EA, Cherdyntseva TA, Botina SG, Netrusov AI (2007) Bacteria associated with orchid roots and microbial production of auxin. Microbiol Res 162:69鈥?6CrossRef PubMed
    Wani PA, Khan MS, Zaidi A (2007) Effect of metal tolerant plant growth promoting Bradyrhizobium sp. (vigna) on growth, symbiosis, seed yield and metal uptake bygreengram plants. Chemosphere 70:36鈥?5CrossRef PubMed
    Werner C, Correia O, Beyschlag W (2002) Characteristic patterns of chronic and dynamic photoinhibition of different functional groups in a Mediterranean ecosystem. Funct Plant Biol 29:999鈥?011CrossRef
  • 作者单位:E. Mateos-Naranjo (1)
    J. Mesa (2)
    E. Pajuelo (2)
    A. Perez-Martin (3)
    M. A. Caviedes (2)
    I. D. Rodr铆guez-Llorente (2)

    1. Departamento de Biolog铆a Vegetal y Ecolog铆a, Facultad de Biolog铆a, Universidad de Sevilla, Reina Mercedes s/n, 41012, Sevilla, Spain
    2. Departamento de Microbiologia, Facultad de Farmacia, Universidad de Sevilla, C/ Profesor Garc铆a Gonz谩lez 2, 41012, Sevilla, Spain
    3. Instituto de Recursos Naturales y Agrobiolog铆a de Sevilla (IRNAS), CSIC, Reina Mercedes 10, 41012, Sevilla, Spain
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Sciences
    Soil Science and Conservation
    Plant Physiology
    Ecology
  • 出版者:Springer Netherlands
  • ISSN:1573-5036
文摘
Background and aims A glasshouse experiment was conceived to assess the role of a bacterial consortium (Pseudomonas composti SDT3, Aeromonasaquariorum SDT 13 and Bacillus sp. SDT14) isolated from the rizhosphere of S. densiflora on its growth and physiological tolerance to the physicochemical properties of marsh soils.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700