Oxygen isotopic variations in modern cetacean teeth and bones: implications for ecological, paleoecological, and paleoclimatic studies
详细信息    查看全文
  • 作者:Burcu Ciner ; Yang Wang ; William Parker
  • 关键词:Oxygen isotopes ; Phosphate ; Cetacean ; Whales ; Teeth ; Bones
  • 刊名:Chinese Science Bulletin
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:61
  • 期:1
  • 页码:92-104
  • 全文大小:2,167 KB
  • 参考文献:1.Longinelli A (1966) Ratios of oxygen-18: oxygen-16 in phosphate from living and fossil marine organisms. Nature 211:923–927CrossRef
    2.Longinelli A, Nuti S (1973) Revised phosphate-water isotopic temperature scale. Earth Planet Sci Lett 19:373–376CrossRef
    3.Longinelli A, Nuti S (1973) Oxygen isotope measurements of phosphate from fish teeth and bones. Earth Planet Sci Lett 20:337–340CrossRef
    4.Kolodny Y, Luz B, Navon O (1983) Oxygen isotope variations in phosphate of biogenic apatite, I. Fish bone apatite—rechecking the rules of the game. Earth Planet Sci Lett 64:398–404CrossRef
    5.Puceat E, Lecuyer C, Donnadieu Y et al (2007) Fish tooth δ18O revising Late Cretaceous meridional upper ocean water temperature gradients. Geology 35:107–110CrossRef
    6.Puceat E, Lecuyer C, Sheppard SMF et al (2003) Thermal evolution of Cretaceous Tethyan marine waters inferred from oxygen isotope composition of fish tooth enamels. Paleoceanography 18:1029
    7.Zachos J, Pagani M, Sloan L et al (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693CrossRef
    8.Lecuyer C, Grandjean P, Paris F et al (1996) Deciphering “temperature” and “salinity” from biogenic phosphates: the δ18O of coexisting fishes and mammals of the Middle Miocene sea of western France. Palaeogeogr Palaeoclimatol Palaeoecol 126:61–74CrossRef
    9.Billon-Bruyat JP, Lecuyer C, Martineau F et al (2005) Oxygen isotope compositions of Late Jurassic vertebrate remains from lithographic limestones of western Europe: implications for the ecology of fish, turtles, and crocodillans. Palaeogeogr Palaeoclimatol Palaeoecol 216:359–375CrossRef
    10.Yoshida N, Miyazaki N (1991) Oxygen isotope correlation of cetacean bone phosphate with environmental water. J Geophys Res-Oceans 96:815–820CrossRef
    11.Barrick RE, Fischer AG, Kolodny Y et al (1992) Cetacean bone oxygen isotopes as proxies for Miocene ocean composition and glaciation. Palaios 7:521–531CrossRef
    12.Williams R, Elliott J (1979) Basic and applied dental biochemistry. Churchill Livingstone, Edinburgh
    13.Newsome SD, Etnier MA, Monson DH et al (2009) Retrospective characterization of ontogenetic shifts in killer whale diets via delta C-13 and delta N-15 analysis of teeth. Mar Ecol Prog Ser 374:229–242CrossRef
    14.Newsome SD, Clementz MT, Koch PL (2010) Using stable isotope biogeochemistry to study marine mammal ecology. Mar Mam Sci 26:509–572
    15.Hare P (1980) Organic geochemistry of bone and its relation to the survival of bone in the natural environment. In: Behrensmeyer AK, Hill AP (eds) Fossils in the making. University of Chicago Press, Chicago, pp 208–219
    16.Lee-Thorpe J, Van der Merwe N (1989) Isotopic evidence for dietary differences between two extinct baboon species from Swartkrans. J Hum Evol 18:183–190CrossRef
    17.Bryant JD, Froelich PN (1995) A model of oxygen isotope fractionation in body water of large mammals. Geochim Cosmochim Acta 59:4523–4537CrossRef
    18.Kohn MJ (1996) Predicting animal δ18O: accounting for diet and physiological adaption. Geochim Cosmochim Acta 60:4811–4829CrossRef
    19.Huertas AD, Iacumin P, Stenni B et al (1995) Oxygen-isotope variations of phosphate in mammalian bone and tooth enamel. Geochim Cosmochim Acta 59:4299–4305CrossRef
    20.Hoppe KA (2006) Correlation between the oxygen isotope ratio of North American bison teeth and local waters: implication for paleoclimatic reconstructions. Earth Planet Sci Lett 244:408–417CrossRef
    21.Kohn MJ, Cerling TE (2002) Stable isotope compositions of biological apatite. Phosphates: Geochem Geobiol Mater Import (Rev Mineral Geochem) 48: 455–488
    22.Wang Y, Kromhout E, Zhang C et al (2008) Stable isotopic variations in modern herbivore tooth enamel, plants and water on the Tibetan Plateau: implications for paleoclimate and paleoelevation reconstructions. Palaeogeogr Palaeoclimatol Palaeoecol 254:363–385CrossRef
    23.D’Angela D, Longinelli A (1984) Oxygen isotopes in living mammal’s bone phosphate: further results. Chem Geol 86:75–82
    24.Longinelli A (1984) Oxygen isotopes in mammal bone phosphate: A new tool for paleohydrological and paleoclimatological research? Geochim Cosmochim Acta 48:385–390CrossRef
    25.Wang Y, Xu YF, Khawaja S et al (2013) Diet and environment of a mid-Pliocene fauna from southwestern Himalaya: paleo-elevation implications. Earth Planet Sci Lett 376:43–53CrossRef
    26.Wang Y, Wang XM, Xu YF et al (2008) Stable isotopes in fossil mammals, fish and shells from Kunlun Pass Basin, Tibetan Plateau: paleo-climatic and paleo-elevation implications. Earth Planet Sci Lett 270:73–85CrossRef
    27.Higgins P, MacFadden BJ (2004) “Amount Effect” recorded in oxygen isotopes of Late Glacial horse (Equus) and bison (Bison) teeth from the Sonoran and Chihuahuan deserts, southwestern United States. Palaeogeogr Palaeoclimatol Palaeoecol 206:337–353CrossRef
    28.MacFadden BJ, Higgins P, Clementz MT et al (2004) Diets, habitat preferences, and niche differentiation of Cenozoic sirenians from Florida: evidence from stable isotopes. Paleobiology 30:297–324CrossRef
    29.Wang Y, Cerling TE (1994) A model of fossil tooth and bone diagenesis—implications for paleodiet reconstruction from stable isotopes. Palaeogeogr Palaeoclimatol Palaeoecol 107:281–289CrossRef
    30.de Buffrenil V, Dabin W, Zylberberg L (2004) Histology and growth of the cetacean petro-tympanic bone complex. J Zool 262:371–381CrossRef
    31.Lee-Thorpe J, Van der Merwe N (1991) Aspects of the chemistry of modern and fossil biogenic apatites. J Archaeol Sci 18:343–354CrossRef
    32.Ayliffe LK, Chivas AR, Leakey MG (1994) The retention of primary oxygen isotope compositions of fossil elephant skeletal phosphate. Geochim Cosmochim Acta 58:5291–5298CrossRef
    33.Clementz C, Koch P (2001) Differentiating aquatic mammal haboitat and foraging ecology with stable isotope in tooth enamel. Oecologia 129:461–472CrossRef
    34.Luo ZX, Marsh K (1996) Petrosal (periotic) and inner ear of a Pliocene kogiine whale (Kogiinae, Odontoceti): implications on relationships and hearing evolution of toothed whales. J Vert Paleontol 16:328–348CrossRef
    35.Geisler JH, Luo ZX (1996) Petrosal and inner ear structures of Herpetocetus, their implications on relationships and hearing function of archaic mysticetes. J Paleontol 70:1045–1066
    36.Luo ZX (1998) Homology and transformation of the cetacean ectotympanic structures. In: Thewissen J (ed) Evolutionary emergence of whales. Plenum Press, New York, pp 269–301CrossRef
    37.Crowson RA, Showers WJ, Wright EK et al (1991) Preparation of phosphate samples for oxygen isotope analysis. Anal Chem 63:2397–2400CrossRef
    38.Lecuyer C, Grandjean P, Oneil JR et al (1993) Thermal excursions in the ocean at the cretaceous-tertiary boundary (northern morocco) δ18O record of phosphatic fish debris. Palaeogeogr Palaeoclimatol Palaeoecol 105:235–243CrossRef
    39.O’Neil JR, Roe LJ, Reinhard E et al (1994) A rapid and precise method of oxygen isotope analysis of biogenic phosphate. Isr J Earth Sci 43:203–212
    40.Vennemann TW, Fricke HC, Blake RE et al (2002) Oxygen isotope analysis of phosphates: a comparison of techniques for analysis of Ag3PO4. Chem Geol 185:321–336CrossRef
    41.Ridgway SH (1972) Homeostasis in the aquatic environment. Mammals of the sea. Charles C. Thomas, Springfield
    42.Whittow GC, Hampton IFG, Matsuura DT et al (1974) Body-temperature of 3 species of whales. J Mammal 55:653–656CrossRef
    43.Kusuda S, Kakizoe Y, Kanda K et al (2011) Ovarian cycle approach by rectal temperature and fecal progesterone in a female killer whale, Orcinus orca. Zoo Biol 30:285–295CrossRef
    44.Evans P (1987) The natural history of whales and dolphins. Facts on File, New York
    45.Gray JE (1844) On the cetaceous animals. In: Richardson J, Gray JE (eds) The zoology of the voyage of the HMS Erebus & Terror, under the command of Captain Sir James Clark Ross, during the years 1839 to 1843. Authority of the Lords Commissioners of the Admiralty, London
    46.Bloodworth B, Odell D (2008) Kogia breviceps (Cetacea: kogiidae). Mamm Sp 819:1–12CrossRef
    47.Davis RW, Fargion GS, May N et al (1998) Physical habitat of cetaceans along the continental slope in the north-central and western Gulf of Mexico. Mar Mam Sci 14:490–507CrossRef
    48.Baumgartner MF, Mullin KD, May LN et al (2001) Cetacean habitats in the northern Gulf of Mexico. Fish Bull 99:219–239
    49.Whitehead H (2003) The diet of a sperm whale: the walnut, the pea and the half-pound steak. In: Whitehead H (ed) Sperm whales: social evolution in the ocean. University of Chicago Press, Chicago, pp 43–55
    50.Blainville HD (1838) Sur les cachalots. Ann. fr. étrang. Anat Physiol 2:335–337
    51.Taylor BL, Baird R, Barlow J et al (2008) Physeter macrocephalus. IUCN Red List of Threatened Species: International Union for Conservation of Nature, Gland
    52.Schorr GS, Falcone EA, Moretti DJ et al (2014) First long-term behavioral records from cuvier’s beaked whales (Ziphius cavirostris) reveal record
    eaking dives. PLoS One 9(3):e92633. doi:10.​1371/​journal.​pone.​0092633 CrossRef
    53.Reeves R, Berger J, Clapham P (2006) Killer whales as predators of large baleen whales and sperm whales. In: Estes JA (ed) Whales, ahaling, and ocean ecosystems. University of California Press, Berkeley and Los Angeles
    54.Reeves R, Stewart B, Clapham P et al (2002) Guide to marine mammals of the world. A.A. Knopf Distributed by Random House, New York
    55.Longinelli A (1965) Oxygen isotopic composition of orthophosphate from shells of living marine mrganisms. Nature 207:716–719CrossRef
    56.Longinelli A, Nuti S (1968) Oxygen isotopic compositon of phosphorites from marine formations. Earth Planet Sci Lett 5:13–16CrossRef
    57.Lecuyer C, Grandjean P, Emig CC (1996) Determination of oxygen isotope fractionation between water and phosphate from living lingulids: potential application to palaeoenvironmental studies. Palaeogeogr Palaeoclimatol Palaeoecol 126:101–108CrossRef
    58.Puceat E, Joachimski MM, Bouilloux A et al (2010) Revised phosphate-water fractionation equation reassessing paleotemperatures derived from biogenic apatite. Earth Planet Sci Lett 298:135–142CrossRef
    59.Longinelli A, Nuti S (1973) Revised phosphate-water isotopic temperature scale. Earth Planet Sci Lett 19:373–376CrossRef
    60.Lecuyer C, Picard S, Garcia JP et al (2003) Thermal evolution of Tethyan surface waters during the Middle-Late Jurassic: evidence from δ18O values of marine fish teeth. Paleoceanography 18:1–8CrossRef
    61.LeGrande AN, Schmidt GA (2006) Global gridded data set of the oxygen isotopic composition in seawater. Geophys Res Lett. doi:10.​1029/​2006GL026011
    62.Billups K, Schrag DP (2002) Paleotemperatures and ice volume of the past 27 Myr revisited with paired Mg/Ca and O-18/O-16 measurements on benthic foraminifera. Paleoceanography 17:1–11
    63.Amiot R, Gohlich UB, Lecuyer C et al (2008) Oxygen isotope compositions of phosphate from Middle Miocene-Early Pliocene marine vertebrates of Peru. Palaeogeogr Palaeoclimatol Palaeoecol 264:85–92CrossRef
    64.Scheffer VB, Myrick ACJ (1980) A review of studies to 1970 of growth layers in the teeth of marine mammals. In: Perrin WF, Myrick AC (eds) Age determination of toothed whales and sirenians. Int Whal Comnn
    65.Mackintosh NA (1942) The southern stocks of whalebone whales. Discovery Reports 22:197–300
    66.Tomilin AG (1957) Mammals of the USSR and adjacent countries. Vol IX: Cetacea. Moscow: Izv. Akad. Nauk. SSR (translated and published by Scientific Translation in 1967)
    67.Shemesh A, Kolodny Y, Luz B (1983) Oxygen isotope variations in phosphate of biogenic apatite, II. Phosphate rocks. Earth Planet Sci Lett 64:405–416CrossRef
    68.Shemesh A, Kolodny Y, Luz B (1988) Isotope geochemistry of oxygen and carbon in phosphate and carbonate of phosphorite francolite. Geochim Cosmochim Acta 52:2565–2572CrossRef
    69.Lecuyer C, Grandjean P, Sheppard SMF (1999) Oxygen isotope exchange between dissolved phosphate and water at temperatures <=135 °C: inorganic versus biological fractionations. Geochim Cosmochim Acta 63:855–862CrossRef
    70.Cozzi B, Podesta M, Mazzariol S et al (2012) Fetal and early post-natal mineralization of the tympanic bulla in fin whales may reveal a hitherto undiscovered evolutionary trait. PloS One 7:e37110CrossRef
    71.Taylor BL, Baird R, Barlow J et al (2011) Globicephala macrorhynchus. IUCN Red List of Threatened Species Version 20132, International Union for Conservation of Nature, Gland
  • 作者单位:Burcu Ciner (1) (2)
    Yang Wang (1)
    William Parker (3)

    1. Department of Earth, Ocean and Atmospheric Science, and National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
    2. Department of Geological Engineering, Balikesir University, Balikesir, Turkey
    3. Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL, USA
  • 刊物主题:Science, general; Life Sciences, general; Physics, general; Chemistry/Food Science, general; Earth Sciences, general; Engineering, general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1861-9541
文摘
The oxygen isotope ratios (δ18O) preserved in marine sediments have been widely used to reconstruct past ocean temperatures. However, there remain significant uncertainties associated with this method, owing to assumptions about the δ18O of ancient seawater which affects the temperature inferred from sediment δ18O records. In this study, oxygen isotope compositions of phosphate in teeth and bones from five different modern cetacean species, including sperm whale, pygmy sperm whale, short-finned pilot whale, killer whale, and Cuvier’s beaked whale, and three fossil whales were determined. The data were used to assess whether the oxygen isotope ratios of biogenic phosphate (δ18Op) from cetaceans are a reliable proxy for the oxygen isotopic composition of ocean water (δ18Ow). The δ18Op values of modern cetaceans range from 15.5 ‰ to 21.3 ‰, averaging (19.6 ‰± 0.8 ‰) (n = 136). Using a greatly expanded global cetacean δ18Op dataset, the following regression equation is derived for cetaceans: δ18Ow = 0.95317 (±0.03293) δ18Op − 17.971 (±0.605), r = 0.97253. The new equation, when applied to fossil teeth and bones, yielded reasonable estimates of ancient seawater δ18Ow values. Intra-tooth isotopic variations were observed within individual teeth. Among the selected species, the killer whale (O. orca) has the lowest δ18Op values and the largest intra-tooth δ18Op variation, reflecting its habitat preference and migratory behavior. The results show that oxygen isotope analysis of phosphate in cetacean teeth and dense ear bones provides a useful tool for reconstructing the oxygen isotopic composition of seawater and for examining environmental preferences (including migratory behavior) of both modern and ancient whales.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700