Investigation of Generalized Relative Permeability Coefficients for Electrically Assisted Oil Recovery in Oil Formations
详细信息    查看全文
  • 作者:Ehsan Ghazanfari (1)
    Sibel Pamukcu (2)
    Mesut Pervizpour (2)
    Zuleima Karpyn (3)
  • 关键词:Relative permeability ; Electro ; osmosis ; Viscous drag ; Oil recovery ; Saturation
  • 刊名:Transport in Porous Media
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:105
  • 期:1
  • 页码:235-253
  • 全文大小:838 KB
  • 参考文献:1. Acar, Y.B., Alshawabkeh, A.N.: Electrokinetic remediation: I. pilot-scale tests with lead-spiked kaolinite. ASCE J. Geotech. Eng. 122(3), 173鈥?85 (1996) CrossRef
    2. Acar, Y.B., Alshawabkeh, A.N., Parker, R.A.: Theoretical and Experimental Modeling of Multi-Species Transport in Soils Under Electric Fields. Technical report, EPA/600/R-97/054 (1997).
    3. Aggour, M.A., Tchelepi, H.A., Al-Yousef, H.Y.: Effect of electroosmosis on relative permeabilities of sandstones. J. Pet. Sci. Eng. 11, 91鈥?02 (1994) CrossRef
    4. Alshawabkeh, A.N., Acar, Y.B.: Electrokinetic remediation: II. Theory. J. Geotech. Eng. ASCE 122(3), 186鈥?96 (1996) CrossRef
    5. Alshawabkeh, A.N., Acar, Y.B.: Removal of contaminants from soils by electrokinetics A theoretical treatise. J. Environ. Sci. Health A27(7), 1835鈥?861 (1992)
    6. Al Shalabi, E.W., Ghosh, B., Haroun, M., Pamukcu, S.: Application of direct current potential to enhancing water flood recovery efficiency. Pet. Sci. Technol. 30(20), 2160鈥?168 (2012). doi:10.1080/10916466.2010.547902 CrossRef
    7. Amba, S.A., Chilingar, G.W., Besson, C.M.: Use of direct electrical current for increasing the flow rate of reservoir fluids during petroleum recovery. J. Can. Pet. 3(1), 8鈥?4 (1964) CrossRef
    8. Arango, J.D., Kantzas, A.: Visualization of viscous coupling effects in heavy oil reservoirs. In: Proceedings of SPE International Thermal Operations and Heavy Oil Symposium (2008), doi:10.2118/117675-MS
    9. Avraam, D.G., Payatakes, A.C.: Generalized relative permeability coefficients during steady-state two-phase flow in porous media, and correlation with the flow mechanisms. J. Trans. Porous Med. 20, 135鈥?68 (1995) CrossRef
    10. Baviere, M.: Basic Concepts in Enhanced Oil Recovery Processes. Elsevier, London. ISBN 1-85166-617-6 (2007)
    11. Bentsen, R.G., Manai, A.A.: On the use of conventional concurrent and countercurrent effective permeabilities to estimate the four generalized permeability coefficients which arise in coupled two phase flow. J. Trans. Porous Med. 11, 243鈥?62 (1993) CrossRef
    12. Brask, A., Goranovic, B., Bruus, H.: Electroosmotically driven two-liquid viscous pump for no conducting liquids. J. Micro Total Anal. Syst. 1, 145鈥?47 (2002)
    13. Bruell, C.J., Segal, B.A., Walsh, M.T.: Electroosmotic removal of gasoline hydrocarbons and TCE from clay. J. Environ. Eng. ASCE 118(1), 63鈥?8 (1992) CrossRef
    14. Brooks, R., Corey, A.: Hydraulic Properties of Porous Media, Hydrology Papers, vol. 3, Colorado State University (1964)
    15. Carcoana, A.: Applied Enhanced Oil Recovery. Prentice Hall, Englewood Cliffs, ISBN 0-13-044272-0 (1992).
    16. Chilingar, G.V., El-Nassir, A., Steven, R.G.: Effect of direct electrical current on permeability of sandstone core. J. Pet. Technol. 22(7), 830鈥?36 (1968) CrossRef
    17. Chilingar, G.V., Sang, C.K., Davis, J.E., Farhangi, H., Adamson, L.G., Sawabini, S.: Possible use of direct electric current for augmenting reservoir energy during petroleum production. Compass 45(4), 272鈥?85 (1968)
    18. Corey, A.: Mechanics of Immiscible Fluids in Porous Media, 3rd edn. Water Resources Publications, LLC (1994)
    19. Dullien, F.A., Dong, M.: Experimental determination of the flow relative permeability coefficients in the coupled equations of two phase flow in porous media. J. Trans. Porous Med. 25, 97鈥?20 (1996) CrossRef
    20. Eykholt, G.R., Daniel, D.E.: Impact of system chemistry on electroosmosis in contaminated soil. J. Geotech. Geoenviron. Eng. 120(5), 797鈥?15 (1994) CrossRef
    21. Fleureau, J.M., Dupeyart, M.: Influence of an electric field on the interfacial parameters of a water/oil/rock system: application to oil enhanced recovery. J. Colloid Interface Sci. 123(1), 249鈥?58 (1988) CrossRef
    22. Gao, Y., Wang, C., Wong, T.N., Yang, C., Nguyen, N.T., Ooi, K.T.: Electro-osmotic control of the interface position of two-liquid flow through a microchannel. J. Micromech. Microeng. 17, 358鈥?66 (2007) CrossRef
    23. Gao, Y., Wong, T.N., Yang, C., Ooi, K.T.: Two-fluid electroosmotic flow in microchannels. J. Colloid Interface Sci. 284, 306鈥?14 (2005) CrossRef
    24. Ghazanfari, E., Shrestha, R., Miroshnik, A., Pamukcu, S.: Electrically assisted liquid hydrocarbon transport in porous media. Electrochim. Acta 86, 185鈥?91 (2012) CrossRef
    25. Ghazanfari, E.: Development of a mathematical model for electrically assisted oil transport in porous media. PhD dissertation, Lehigh university, Bethlehem (2013).
    26. Gladkov, S.O.: Dielectric Properties of Porous Media. Springer, New York (2003) CrossRef
    27. Green, D. P.: Extracting pore throat size and relative permeability from MRI based capillary pressure curves. International Symposium of the Society of Core Analysts, No. 46 (2009).
    28. Haydon, D.A., Taylor, F.H.: On adsorption at the oil/water interface and the calculation of electrical potentials in the aqueous surface phase I. Neutral molecules and a simplified treatment for Ions. Philos. Trans. R. Soc. Lond. A 253(1027), 255鈥?75 (1960). doi:10.1098/rsta.1960.0024 CrossRef
    29. Haroun, M. R., Chilingar, G.V.: Optimizing electroosmotic flow potential for electrically enhanced oil recovery (EEORTM) in carbonate rock formations of Abu Dhabi based on rock properties and composition. Society of Petroleum Engineers. IPTC 13812 (2009).
    30. Hunter, R.J.: Zeta Potential in Colloid Science. Academic Press, New York, NY (1981)
    31. Isaacs, E., Chow, R., Babchin, A.: On the Significance of Reservoir Wettability on Extraction and Recovery Processes. Alberta Research Council, Alberta. Report No. 1998.021 (1993)
    32. Jacobs, R.A., Probstein, R.F.: Two-dimensional modeling of electromigration. AICHE J. 42(6), 1685鈥?696 (1996) CrossRef
    33. Kalaydjian, F.: Commentary on origin and quantification of coupling between relative permeabilities for two phase flow in porous media. J. Trans. Porous. Med. 6, 469鈥?71 (1991)
    34. Keighin, C.W.: Physical properties of clastic reservoir rocks in the Uinta, Wind River, and Anadarko Basins, as determined by mercury-injection porosimetry. USGS Bull. 2146鈥揋, 73鈥?3 (1997)
    35. Kim, H., Burgess, D.J.: Prediction of interfacial tension between oil mixtures and water. J. Colloid Interface Sci. 241(2), 509鈥?13 (2011) CrossRef
    36. Kim, S.O., Moon, S.H., Kim, K.W.: Enhanced electrokinetic soil remediation for removal of organic contaminants. J. Environ. Technol. 21(4), 417鈥?26 (2000) CrossRef
    37. Killough, L.E., Gonzalez, J.A.: A fully implicit model for electrically enhanced oil recovery. In: Proceedings of Society of Petroleum Engineering Conference, New Orleans (1986) doi:10.2118/15605-MS
    38. Liang, L., Lohrenz, J.: Dynamic method of measuring coupling coefficients of transport equations of two phase flow in porous media. J. Trans. Porous Med. 15, 71鈥?9 (1994) CrossRef
    39. Li, H., Pan, C., Miller, C.: Pore-scale investigation of viscous coupling effects for two-phase flow in porous media. J. Phys. Rev. E 72, 026705 (2005) CrossRef
    40. Lichaa, P. M., Alpustun, H., Abdul, J. H., Nofal, W. A., Fuseni, A. B.: Wettability evaluation of a carbonate reservoir rock. In: Worthington, P.W., Chardaire-Riviere, C. (eds.) Proceedings of the Society of Core Analysis Third European Core Analysis Symposium, Paris (1992)
    41. Liu, M., Liu, Y., Guo, Q., Yang, J.: Modeling of electroosmotic pumping of nonconducting liquids and biofluids by a two-phase flow method. J. Electroanal. Chem. 636, 86鈥?2 (2009) CrossRef
    42. Marinova, K.G., Alargova, R.G., Denkov, N.D., Velev, O.D., Petsev, D.N., Ivanov, I.B., Borwankar, R.P.: Charging of oil鈥搘ater interfaces due to spontaneous adsorption of hydroxyl ions. Langmuir 12, 2045鈥?051 (1996) CrossRef
    43. Martys, N.S., Hagedorn, J.G.: Multiscale modeling of fluid transport in heterogeneous materials using discrete Boltzmann methods. Mater. Struct. lMatCriaux et Constructions 35, 650鈥?59 (2002) CrossRef
    44. Nelson, P.: Pore-throat sizes in sandstones, tight sandstones, and shales. AAPG Bull. 93(3), 329鈥?40 (2009) CrossRef
    45. Pamukcu, S.: Electrokinetic Removal of Coal Tar Constituents from Contaminated Soils. EPRI TR-103320 (1994)
    46. Pamukcu, S., Filipova, I., Wittle, J.K.: The role of electroosmosis in transporting PAH compounds in contaminated soils electrochemical technology applied to environmental problems. ECS Trans. Electrochem. Soc. PV95鈥?2, 252鈥?66 (1995)
    47. Pamukcu, S., Pervizpour, M.: Electroosmotically aided restoration of TCE contaminated soil. Final Report to Lawrence Livermore National Laboratory, Environmental Restoration Division, Contract No.B3460123, University of California (1998)
    48. Rodriguez, K., Araujo, M.: Temperature and pressure effects on zeta potential values of reservoir minerals. J. Colloid Interface Sci. 300, 788鈥?94 (2006) CrossRef
    49. Saichek, R.E., Reddy, K.R.: Surfactant-enhanced electrokinetic remediation of polycyclic aromatic hydrocarbons in heterogeneous subsurface Environments. J. Environ. Eng. Sci. 4(5), 327鈥?39 (2005) CrossRef
    50. Santiago, J.G.: Electroosmotic flows in microchannels with finite inertial and pressure forces. Anal. Chem. 73(10), 2353鈥?365 (2001) CrossRef
    51. Sato, M., Kudo, N., Saito, M.: Surface tension reduction of liquid by applied electric field using vibrating jet method. EEE Trans. Ind. Appl 34(2), 294鈥?00 (1998) CrossRef
    52. Shapiro, A.P., Probstein, R.F.: Removal of contaminants from saturated clay by electroosmosis. J. Environ. Sci. Technol. 27(2), 283鈥?91 (1993) CrossRef
    53. Smoluchowski, M.: In: Graetz, S. (ed.) Handbuch der Electrizitat und des Magnetismus, II. J.A. Barth, Leipzig (1921)
    54. Wang, P., Chen, Z., Chang, H.C.: A new electro-osmotic pump based on silica monoliths. Sens. Actuators B 113, 500鈥?09 (2006) CrossRef
    55. Wittle, J. K., Hill, D.C., Chilingar, G.V.: Electro-enhanced oil recovery (EEOR) using direct current. In: Oil Sands Heavy Oil Technologies Conference, Calgary (2007) doi:10.1080/15567036.2010.514843
    56. Wittle, J. K., Hill, D.C., Chilingar, G.V.: Direct current electrical enhanced oil recovery in heavy-oil reservoirs to improve recovery, reduce water cut, and reduce H2S production while increasing API gravity. Society of Petroleum Engineers, SPE 114012 (2008).
    57. Yao, S., Santiago, J.G.: Porous glass electroosmotic pumps: theory. J. Colloid Interface Sci. 268, 133鈥?42 (2003) CrossRef
  • 作者单位:Ehsan Ghazanfari (1)
    Sibel Pamukcu (2)
    Mesut Pervizpour (2)
    Zuleima Karpyn (3)

    1. Civil and Environmental Engineering Program, University of Vermont, Burlington, VT, USA
    2. Department of Civil and Environmental Engineering, Lehigh University, Bethlehem, PA, USA
    3. Department of Energy and Mineral Engineering, Pennsylvania State University, University Park, PA, USA
  • ISSN:1573-1634
文摘
Evaluation of relative permeability coefficients is one of the key steps in reliable simulation of two-phase flow in porous media. An extensive body of work exists on evaluation of these coefficients for two-phase flow under pressure gradient. Oil transport under an applied electrical gradient in porous media is also governed by the principles of two-phase flow, but is less understood. In this paper, relative permeability coefficients under applied electric field are evaluated for a specific case of two- phase fluid flow in water-wet porous media, where the second fluid phase is oil. It is postulated that the viscous drag on the oil phase, exerted by the electro-osmotic flow of the water phase, is responsible for the transport of oil in the absence of a pressure gradient. Reliable prediction of the flow patterns necessitates accurate representation and determination of the relative permeability coefficients under the electrical gradient. The contribution of each phase to the flow is represented mathematically, and the relative permeability coefficients are evaluated through electro-osmotic flow measurements conducted on oil bearing rock cores.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700