Distinct effects of dipeptidyl peptidase-4 inhibitor and glucagon-like peptide-1 receptor agonist on islet morphology and function
详细信息    查看全文
  • 作者:Asuka Morita ; Eri Mukai ; Ayano Hiratsuka ; Tomozumi Takatani ; Toshihiko Iwanaga…
  • 关键词:DPP ; 4 inhibitor ; GLP ; 1 receptor agonist ; β cell proliferation ; Apoptosis ; Insulin secretion ; Glucose tolerance
  • 刊名:Endocrine
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:51
  • 期:3
  • 页码:429-439
  • 全文大小:1,336 KB
  • 参考文献:1.F. Ismail-Beigi, Clinical practice. Glycemic management of type 2 diabetes mellitus. N. Engl. J. Med. 366, 1319–1327 (2012). doi:10.​1056/​NEJMcp1013127 CrossRef PubMed
    2.UK Prospective Diabetes Study (UKPDS) Group, Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 352, 854–865 (1998)CrossRef
    3.S.E. Kahn, S.M. Haffner, M.A. Heise, W.H. Herman, R.R. Holman, N.P. Jones, B.G. Kravitz, J.M. Lachin, M.C. O’Neill, B. Zinman, G. Viberti, Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N. Engl. J. Med. 355, 2427–2443 (2006). doi:10.​1056/​NEJMoa066224 CrossRef PubMed
    4.UK Prospective Diabetes Study Group, UK prospective diabetes study 16. Overview of 6 years’ therapy of type II diabetes: a progressive disease. Diabetes 44, 1249–1258 (1995)CrossRef
    5.H. Sakuraba, H. Mizukami, N. Yagihashi, R. Wada, C. Hanyu, S. Yagihashi, Reduced beta-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese Type II diabetic patients. Diabetologia 45, 85–96 (2002). doi:10.​1007/​s001250200009 CrossRef PubMed
    6.A.E. Butler, J. Janson, S. Bonner-Weir, R. Ritzel, R.A. Rizza, P.C. Butler, Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52, 102–110 (2003)CrossRef PubMed
    7.K.H. Yoon, S.H. Ko, J.H. Cho, J.M. Lee, Y.B. Ahn, K.H. Song, S.J. Yoo, M.I. Kang, B.Y. Cha, K.W. Lee, H.Y. Son, S.K. Kang, H.S. Kim, I.K. Lee, S. Bonner-Weir, Selective beta-cell loss and alpha-cell expansion in patients with type 2 diabetes mellitus in Korea. J. Clin. Endocrinol. Metab. 88, 2300–2308 (2003). doi:10.​1210/​jc.​2002-020735 CrossRef PubMed
    8.J. Rahier, Y. Guiot, R.M. Goebbels, C. Sempoux, J.C. Henquin, Pancreatic beta-cell mass in European subjects with type 2 diabetes. Diabetes Obes. Metab. 10(Suppl 4), 32–42 (2008). doi:10.​1111/​j.​1463-1326.​2008.​00969.​x CrossRef PubMed
    9.M.A. Nauck, Incretin-based therapies for type 2 diabetes mellitus: properties, functions, and clinical implications. Am. J. Med. 124, S3–S18 (2011). doi:10.​1016/​j.​amjmed.​2010.​11.​002 CrossRef PubMed
    10.J.E. Campbell, D.J. Drucker, Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab. 17, 819–837 (2013). doi:10.​1016/​j.​cmet.​2013.​04.​008 CrossRef PubMed
    11.M. Saito, T. Iwawaki, C. Taya, H. Yonekawa, M. Noda, Y. Inui, E. Mekada, Y. Kimata, A. Tsuru, K. Kohno, Diphtheria toxin receptor-mediated conditional and targeted cell ablation in transgenic mice. Nat. Biotechnol. 19, 746–750 (2001)CrossRef PubMed
    12.K. Kaneko, K. Ueki, N. Takahashi, S. Hashimoto, M. Okamoto, M. Awazawa, Y. Okazaki, M. Ohsugi, K. Inabe, T. Umehara, M. Yoshida, M. Kakei, T. Kitamura, J. Luo, R.N. Kulkarni, C.R. Kahn, H. Kasai, L.C. Cantley, T. Kadowaki, Class IA phosphatidylinositol 3-kinase in pancreatic beta cells controls insulin secretion by multiple mechanisms. Cell Metab. 12, 619–632 (2010). doi:10.​1016/​j.​cmet.​2010.​11.​005 PubMedCentral CrossRef PubMed
    13.T. Ohyama, K. Sato, Y. Yamazaki, H. Hashizume, N. Horiguchi, S. Kakizaki, M. Mori, M. Kusano, M. Yamada, MK-0626, a selective DPP-4 inhibitor, attenuates hepatic steatosis in ob/ob mice. World J. Gastroenterol. 20, 16227–16235 (2014). doi:10.​3748/​wjg.​v20.​i43.​16227 PubMedCentral PubMed
    14.J.H. Ellenbroek, H.A. Tons, N. de Graaf, M.A. Hanegraaf, T.J. Rabelink, F. Carlotti, E.J. de Koning, Glucagon-like peptide-1 receptor agonist treatment reduces beta cell mass in normoglycaemic mice. Diabetologia 56, 1980–1986 (2013). doi:10.​1007/​s00125-013-2957-2 CrossRef PubMed
    15.D.D. De Leon, S. Deng, R. Madani, R.S. Ahima, D.J. Drucker, D.A. Stoffers, Role of endogenous glucagon-like peptide-1 in islet regeneration after partial pancreatectomy. Diabetes 52, 365–371 (2003)CrossRef PubMed
    16.E. Mukai, T. Ohta, H. Kawamura, E.Y. Lee, A. Morita, T. Sasase, K. Miyajima, N. Inagaki, T. Iwanaga, T. Miki, Enhanced vascular endothelial growth factor signaling in islets contributes to beta cell injury and consequential diabetes in spontaneously diabetic Torii rats. Diabetes Res. Clin. Pract. 106, 303–311 (2014). doi:10.​1016/​j.​diabres.​2014.​08.​023 CrossRef PubMed
    17.T. Miki, K. Nagashima, F. Tashiro, K. Kotake, H. Yoshitomi, A. Tamamoto, T. Gonoi, T. Iwanaga, J. Miyazaki, S. Seino, Defective insulin secretion and enhanced insulin action in KATP channel-deficient mice. Proc. Natl. Acad. Sci. USA 95, 10402–10406 (1998)PubMedCentral CrossRef PubMed
    18.J. Miyazaki, K. Araki, E. Yamato, H. Ikegami, T. Asano, Y. Shibasaki, Y. Oka, K. Yamamura, Establishment of a pancreatic beta cell line that retains glucose-inducible insulin secretion: special reference to expression of glucose transporter isoforms. Endocrinology 127, 126–132 (1990). doi:10.​1210/​endo-127-1-126 CrossRef PubMed
    19.A. Iwama, H. Oguro, M. Negishi, Y. Kato, Y. Morita, H. Tsukui, H. Ema, T. Kamijo, Y. Katoh-Fukui, H. Koseki, M. van Lohuizen, H. Nakauchi, Enhanced self-renewal of hematopoietic stem cells mediated by the polycomb gene product Bmi-1. Immunity 21, 843–851 (2004). doi:10.​1016/​j.​immuni.​2004.​11.​004 CrossRef PubMed
    20.E. Mukai, S. Fujimoto, H. Sato, C. Oneyama, R. Kominato, Y. Sato, M. Sasaki, Y. Nishi, M. Okada, N. Inagaki, Exendin-4 suppresses SRC activation and reactive oxygen species production in diabetic Goto-Kakizaki rat islets in an Epac-dependent manner. Diabetes 60, 218–226 (2011). doi:10.​2337/​db10-0021 PubMedCentral CrossRef PubMed
    21.C. Postic, M. Shiota, K.D. Niswender, T.L. Jetton, Y. Chen, J.M. Moates, K.D. Shelton, J. Lindner, A.D. Cherrington, M.A. Magnuson, Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic beta cell-specific gene knock-outs using Cre recombinase. J. Biol. Chem. 274, 305–315 (1999)CrossRef PubMed
    22.N. Komatsu, T. Oda, T. Muramatsu, Involvement of both caspase-like proteases and serine proteases in apoptotic cell death induced by ricin, modeccin, diphtheria toxin, and pseudomonas toxin. J. Biochem. 124, 1038–1044 (1998)CrossRef PubMed
    23.D.R. McIlwain, T. Berger, T.W. Mak, Caspase functions in cell death and disease. Cold Spring Harb. Perspect. Biol. 5, a008656 (2013). doi:10.​1101/​cshperspect.​a008656 PubMedCentral CrossRef PubMed
    24.J.Y. Lee, M. Ristow, X. Lin, M.F. White, M.A. Magnuson, L. Hennighausen, RIP-Cre revisited, evidence for impairments of pancreatic beta-cell function. J. Biol. Chem. 281, 2649–2653 (2006)CrossRef PubMed
    25.K. Oyama, K. Minami, K. Ishizaki, M. Fuse, T. Miki, S. Seino, Spontaneous recovery from hyperglycemia by regeneration of pancreatic beta-cells in Kir6.2G132S transgenic mice. Diabetes 55, 1930–1938 (2006). doi:10.​2337/​db05-1459 CrossRef PubMed
    26.Y. Dor, J. Brown, O.I. Martinez, D.A. Melton, Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429, 41–46 (2004). doi:10.​1038/​nature02520 CrossRef PubMed
    27.T. Nir, D.A. Melton, Y. Dor, Recovery from diabetes in mice by beta cell regeneration. J. Clin. Invest. 117, 2553–2561 (2007)PubMedCentral CrossRef PubMed
    28.Q. Wang, P.L. Brubaker, Glucagon-like peptide-1 treatment delays the onset of diabetes in 8 week-old db/db mice. Diabetologia 45, 1263–1273 (2002). doi:10.​1007/​s00125-002-0828-3 CrossRef PubMed
    29.T. Tomita, Immunocytochemical localisation of caspase-3 in pancreatic islets from type 2 diabetic subjects. Pathology 42, 432–437 (2010). doi:10.​3109/​00313025.​2010.​493863 CrossRef PubMed
    30.Y. Lee, E.D. Berglund, M.Y. Wang, X. Fu, X. Yu, M.J. Charron, S.C. Burgess, R.H. Unger, Metabolic manifestations of insulin deficiency do not occur without glucagon action. Proc. Natl. Acad. Sci. USA 109, 14972–14976 (2012). doi:10.​1073/​pnas.​1205983109 PubMedCentral CrossRef PubMed
    31.C. Talchai, S. Xuan, H.V. Lin, L. Sussel, D. Accili, Pancreatic beta cell dedifferentiation as a mechanism of diabetic beta cell failure. Cell 150, 1223–1234 (2012). doi:10.​1016/​j.​cell.​2012.​07.​029 PubMedCentral CrossRef PubMed
    32.D. Yabe, Y. Seino, Two incretin hormones GLP-1 and GIP: comparison of their actions in insulin secretion and beta cell preservation. Prog. Biophys. Mol. Biol. 107, 248–256 (2011). doi:10.​1016/​j.​pbiomolbio.​2011.​07.​010 CrossRef PubMed
    33.Y. Sakurai, N. Shintani, A. Hayata, H. Hashimoto, A. Baba, Trophic effects of PACAP on pancreatic islets: a mini-review. J. Mol. Neurosci. 43, 3–7 (2011). doi:10.​1007/​s12031-010-9424-z CrossRef PubMed
    34.R. Violante, J.H. Oliveira, K.H. Yoon, V.A. Reed, M.B. Yu, O.P. Bachmann, J. Ludemann, J.Y. Chan, A randomized non-inferiority study comparing the addition of exenatide twice daily to sitagliptin or switching from sitagliptin to exenatide twice daily in patients with type 2 diabetes experiencing inadequate glycaemic control on metformin and sitagliptin. Diabet. Med. 29, e417–e424 (2012). doi:10.​1111/​j.​1464-5491.​2012.​03624.​x CrossRef PubMed
  • 作者单位:Asuka Morita (1)
    Eri Mukai (1)
    Ayano Hiratsuka (1)
    Tomozumi Takatani (1)
    Toshihiko Iwanaga (2)
    Eun Young Lee (1)
    Takashi Miki (1)

    1. Department of Medical Physiology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
    2. Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University, N15W7, Kita-ku, Sapporo, 060-8638, Japan
  • 刊物主题:Endocrinology; Diabetes; Internal Medicine; Science, general;
  • 出版者:Springer US
  • ISSN:1559-0100
文摘
Although the two anti-diabetic drugs, dipeptidyl peptidase-4 inhibitors (DPP4is) and glucagon-like peptide-1 (GLP-1) receptor agonists (GLP1RAs), have distinct effects on the dynamics of circulating incretins, little is known of the difference in their consequences on morphology and function of pancreatic islets. We examined these in a mouse model of β cell injury/regeneration. The model mice were generated so as to express diphtheria toxin (DT) receptor and a fluorescent protein (Tomato) specifically in β cells. The mice were treated with a DPP4i (MK-0626) and a GLP1RA (liraglutide), singly or doubly, and the morphology and function of the islets were compared. Prior administration of MK-0626 and/or liraglutide similarly protected β cells from DT-induced cell death, indicating that enhanced GLP-1 signaling can account for the cytoprotection. However, 2-week intervention of MK-0626 and/or liraglutide in DT-injected mice resulted in different islet morphology and function: β cell proliferation and glucose-stimulated insulin secretion (GSIS) were increased by MK-0626 but not by liraglutide; α cell mass was decreased by liraglutide but not by MK-0626. Although liraglutide administration nullified MK-0626-induced β cell proliferation, their co-administration resulted in increased GSIS, decreased α cell mass, and improved glucose tolerance. The pro-proliferative effect of MK-0626 was lost by co-administration of the GLP-1 receptor antagonist exendin-(9-39), indicating that GLP-1 signaling is required for this effect. Comparison of the effects of DPP4is and/or GLP1RAs treatment in a single mouse model shows that the two anti-diabetic drugs have distinct consequences on islet morphology and function.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700