Mechanisms of diabetic autoimmunity: I—the inductive interface between islets and the immune system at onset of inflammation
详细信息    查看全文
  • 作者:Nadir Askenasy
  • 关键词:Type 1 diabetes onset ; Thymus ; Islets ; Pancreatic lymph nodes ; Neonatal lymphopenia ; Diabetogenic cells ; T cell effectors
  • 刊名:Immunologic Research
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:64
  • 期:2
  • 页码:360-368
  • 全文大小:848 KB
  • 参考文献:1.Boitard C, Larger E, Timsit J, Sempe P, Bach JF. IDDM: an islet or an immune disease? Diabetologia. 1994;37(Suppl 2):S90.PubMed CrossRef
    2.Homo-Delarche F, Boitard C. Autoimmune diabetes: the role of the islets of Langerhans. Immunol Today. 1996;17:456.PubMed CrossRef
    3.Roep BO, Peakman M. Diabetogenic T lymphocytes in human type 1 diabetes. Curr Opin Immunol. 2011;23:746.PubMed CrossRef
    4.Katz JD, Wang B, Haskins K, Benoist C, Mathis D. Following a diabetogenic T cell from genesis through pathogenesis. Cell. 1993;74:1089.PubMed CrossRef
    5.André I, Gonzalez A, Wang B, Katz J, Benoist C, Mathis D. Checkpoints in the progression of autoimmune disease: lessons from diabetes models. Proc Natl Acad Sci USA. 1996;93:2260.PubMed PubMedCentral CrossRef
    6.Goodnow CC. Multistep pathogenesis of autoimmune disease. Cell. 2007;130:25.PubMed CrossRef
    7.Pearl-Yafe M, Kaminitz A, Yolcu ES, Yaniv I, Stein J, Askenasy N. Pancreatic islets under attack: cellular and molecular effectors. Curr Pharm Des. 2007;13:749.PubMed CrossRef
    8.Finegood DT, Scaglia L, Bonner-Weir S. Dynamics of beta-cell mass in the growing rat pancreas. Estimation with a simple mathematical model. Diabetes. 1995;44:249.PubMed CrossRef
    9.Bonner-Weir S. Life and death of the pancreatic beta cells. Trends Endocrinol Metab. 2000;11:375.PubMed CrossRef
    10.Duvillié B, Currie C, Chrones T, et al. Increased islet cell proliferation, decreased apoptosis, and greater vascularization leading to beta-cell hyperplasia in mutant mice lacking insulin. Endocrinology. 2002;143:1530.PubMed
    11.O'Brien BA, Harmon BV, Cameron DP, Allan DJ. Apoptosis is the mode of beta-cell death responsible for the development of IDDM in the nonobese diabetic (NOD) mouse. Diabetes. 1997;46:750.PubMed CrossRef
    12.Scaglia L, Cahill CJ, Finegood DT, Bonner-Weir S. Apoptosis participates in the remodeling of the endocrine pancreas in the neonatal rat. Endocrinology. 1997;138:1736.PubMed
    13.Hill DJ, Strutt B, Arany E, Zaina S, Coukell S, Graham CF. Increased and persistent circulating insulin-like growth factor II in neonatal transgenic mice suppresses developmental apoptosis in the pancreatic islets. Endocrinology. 2000;141:1151.PubMed
    14.Petrik J, Arany E, McDonald TJ, Hill DJ. Apoptosis in the pancreatic islet cells of the neonatal rat is associated with a reduced expression of insulin-like growth factor II that may act as a survival factor. Endocrinology. 1998;139:2994.PubMed
    15.Kassem SA, Ariel I, Thornton PS, Scheimberg I, Glaser B. Beta-cell proliferation and apoptosis in the developing normal human pancreas and in hyperinsulinism of infancy. Diabetes. 2000;49:1325.PubMed CrossRef
    16.Askenasy EM, Askenasy N. Is autoimmune diabetes caused by aberrant immune activity or defective suppression of physiological self-reactivity? Autoimmun Rev. 2012;12:633.PubMed CrossRef
    17.Eisenbarth GS. Type I diabetes mellitus. A chronic autoimmune disease. N Engl J Med. 1986;314:1360.PubMed CrossRef
    18.von Herrath M, Sanda S, Herold K. Type 1 diabetes as a relapsing–remitting disease? Nat Rev Immunol. 2007;7:988.CrossRef
    19.Hoglund P, Mintern J, Waltzinger C, Heath C, Benoist C, Mathis D. Initiation of autoimmune diabetes by developmentally regulated presentation of islet cell antigens in the pancreatic lymph nodes. J Exp Med. 1999;189:331.PubMed PubMedCentral CrossRef
    20.Trudeau JD, Dutz JP, Arany E, Hill DJ, Fieldus WE, Finegood DT. Neonatal β-cell apoptosis: a trigger for autoimmune diabetes? Diabetes. 2000;49:1.PubMed CrossRef
    21.Turley S, Poirot L, Hattori M, Benoist C, Mathis D. Physiological beta cell death triggers priming of self-reactive T-cells by dendritic cells in a type-1 diabetes model. J Exp Med. 2003;198:1527.PubMed PubMedCentral CrossRef
    22.Zekzer D, Wong FS, Ayalon O, et al. GAD-reactive CD4+ Th1 cells induce diabetes in NOD/SCID mice. J Clin Invest. 1998;101:68.PubMed PubMedCentral CrossRef
    23.Wang B, Gonzalez A, Benoist C, Mathis D. The role of CD8+ T cells in initiation of insulin-dependent diabetes mellitus. Eur J Immunol. 1996;26:176.
    24.Carrington EM, Kos C, Zhan Y, Krishnamurthy B, Allison J. Reducing or increasing β-cell apoptosis without inflammation does not affect diabetes initiation in neonatal NOD mice. Eur J Immunol. 2011;41:2238.PubMed CrossRef
    25.Rowe PA, Campbell-Thompson ML, Schatz DA, Atkinson MA. The pancreas in human type 1 diabetes. Semin Immunopathol. 2011;33:29.PubMed PubMedCentral CrossRef
    26.Larger E, Bécourt C, Bach JF, Boitard C. Pancreatic islet beta cells drive T cell-immune responses in the nonobese diabetic mouse model. J Exp Med. 1995;181:1635.PubMed CrossRef
    27.Itoh A, Maki T. Protection of nonobese diabetic mice from autoimmune diabetes by reduction of islet mass before insulitis. Proc Natl Acad Sci USA. 1996;93:11053.PubMed PubMedCentral CrossRef
    28.Faideau B, Larger E, Lepault F, Carel JC, Boitard C. Role of {beta}-cells in type 1 diabetes pathogenesis. Diabetes. 2005;54(Suppl 2):S87.PubMed CrossRef
    29.Kaufman DL, Clare-Salzler M, Tian J, et al. Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes. Nature. 1993;366:69.PubMed CrossRef
    30.Tisch R, Yang XD, Singer SM, Liblau RS, Fugger L, Mcdevitt HO. Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice. Nature. 1993;366:72.PubMed CrossRef
    31.Wegmann DR, Norbury-Glaser M, Daniel D. Insulin-specific T cells are a predominant component of islet infiltrates in pre-diabetic NOD mice. Eur J Immunol. 1994;24:1853.PubMed CrossRef
    32.Halbout P, Briand JP, Bécourt C, Muller S, Boitard C. T cell response to preproinsulin I and II in the nonobese diabetic mouse. J. Immunol. 2002;169:2436.PubMed CrossRef
    33.Lieberman SM, Evans AM, Han B, et al. Identification of the beta cell antigen targeted by a prevalent population of pathogenic CD8+ T-cells in autoimmune diabetes. Proc Natl Acad Sci USA. 2003;100:8384.PubMed PubMedCentral CrossRef
    34.Savinov AY, Wong FS, Stonebraker AC, Chervonsky AV. Presentation of antigen by endothelial cells and chemoattraction are required for homing of insulin-specific CD8+ T cells. J Exp Med. 2003;197:643.PubMed PubMedCentral CrossRef
    35.Asano M, Toda M, Sakaguchi N, Sakaguchi S. Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J Exp Med. 1996;184:387.PubMed CrossRef
    36.Nakayama M, Abiru N, Moriyama H, et al. Prime role for an insulin epitope in the development of type 1 diabetes in NOD mice. Nature. 2005;435:220.PubMed PubMedCentral CrossRef
    37.Tian J, Olcott AP, Kaufman DL. Antigen-based immunotherapy drives the precocious development of autoimmunity. J Immunol. 2002;169:6564.PubMed CrossRef
    38.Durinovic-Belló I. Autoimmune diabetes: the role of T cells, MHC molecules and autoantigens. Autoimmunity. 1998;27:159.CrossRef
    39.Wooldridge L, Ekeruche-Makinde J, van den Berg HA, et al. A single autoimmune T cell receptor recognizes more than a million different peptides. J Biol Chem. 2012;287:1168.PubMed PubMedCentral CrossRef
    40.Green EA, Eynon EE, Flavell RA. Local expression of TNFalpha in neonatal NOD mice promotes diabetes by enhancing presentation of islet antigens. Immunity. 1998;9:733.PubMed CrossRef
    41.Mintern JD, Sutherland RM, Lew AM, Shortman K, Carbone FR, Heath WR. Constitutive, but not inflammatory, cross-presentation is disabled in the pancreas of young mice. Eur J Immunol. 2002;32:1044.PubMed CrossRef
    42.Peterson JD, Pike B, Dallas-Pedretti A, Haskins K. Induction of diabetes with islet-specific T-cell clones is age dependent. Immunology. 1995;85:455.PubMed PubMedCentral
    43.Zhang Y, O'Brien B, Trudeau J, Tan R, Santamaria P, Dutz JP. In situ beta cell death promotes priming of diabetogenic CD8 T lymphocytes. J Immunol. 2002;168:1466.PubMed CrossRef
    44.Jerne NK. The natural-selection theory of antibody formation. Proc Natl Acad Sci USA. 1955;41:849.PubMed PubMedCentral CrossRef
    45.Bretscher P, Cohn M. A theory of self-nonself discrimination. Science. 1970;169:1042.PubMed
    46.Burnet FM. A modification of Jerne's theory of antibody production using the concept of clonal selection. CA Cancer J Clin. 1976;26:119.PubMed CrossRef
    47.Mackay IR. Autoimmunity since the 1957 clonal selection theory: a little acorn to a large oak. Immunol Cell Biol. 2008;86:67.PubMed CrossRef
    48.Pugliese A, Zeller M, Fernandez A, et al. The insulin gene is transcribed in the human thymus and transcription levels correlated with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nat Genet. 1997;15:293.PubMed CrossRef
    49.Delovitch TL, Singh B. The nonobese diabetic mouse as a model of autoimmune diabetes: immune dysregulation gets the NOD. Immunity. 1997;7:727.PubMed CrossRef
    50.Kishimoto H, Sprent J. A defect in central tolerance in NOD mice. Nat Immunol. 2001;2:1025.PubMed CrossRef
    51.Zucchelli S, Holler P, Yamagata T, Roy M, Benoist C, Mathis D. Defective central tolerance induction in NOD mice: genomics and genetics. Immunity. 2005;22:385.PubMed CrossRef
    52.Lesage S, Hartley SB, Akkaraju S, Wilson J, Townsend M, Goodnow CC. Failure to censor forbidden clones of CD4 T cells in autoimmune diabetes. J Exp Med. 2002;196:1175.PubMed PubMedCentral CrossRef
    53.Bulek AM, Cole DK, Skowera A, et al. Structural basis for the killing of human beta cells by CD8(+) T cells in type 1 diabetes. Nat Immunol. 2012;13:283.PubMed PubMedCentral CrossRef
    54.Enouz S, Carrié L, Merkler D, Bevan MJ, Zehn D. Autoreactive T cells bypass negative selection and respond to self-antigen stimulation during infection. J Exp Med. 2012;209:1769.PubMed PubMedCentral CrossRef
    55.Murakami K, Maruyama H, Nishio A, et al. Effects of intrathymic injection of organ-specific autoantigens, parietal cells, at the neonatal stage on autoreactive effector and suppressor T cell precursors. Eur J Immunol. 1993;23:809.PubMed CrossRef
    56.Dardenne M, Lepault F, Bendelac A, Bach JF. Acceleration of the onset of diabetes in NOD mice by thymectomy at weaning. Eur J Immunol. 1989;19:889.PubMed CrossRef
    57.Askenasy N. Mechanisms of diabetic autoimmunity: II—Is diabetes a central or peripheral disorder of effector and regulatory cells? Immunol Res. 2015. doi:10.​1007/​s12026-015-8725-2 .
    58.Kurts C, Heath WR, Carbone FR, Allison J, Miller JF, Kosaka H. Constitutive class I-restricted exogenous presentation of self antigens in vivo. J Exp Med. 1996;184:923.PubMed CrossRef
    59.Jaakkola I, Jalkanen S, Hänninen A. Diabetogenic T cells are primed both in pancreatic and gut-associated lymph nodes in NOD mice. Eur J Immunol. 2003;33:3255.PubMed CrossRef
    60.Pearl-Yafe M, Iskovich S, Kaminitz A, Stein J, Yaniv I, Askenasy N. Does physiological beta cell turnover initiate autoimmune diabetes in the regional lymph nodes? Autoimmun Rev. 2006;5:338.PubMed CrossRef
    61.Gagnerault MC, Luan JJ, Lotton C, Lepault F. Pancreatic lymph nodes are required for priming of β cell reactive T cells in NOD mice. J Exp Med. 2002;196:369.PubMed PubMedCentral CrossRef
    62.Sarukhan A, Lechner O, von Boehmer H. Autoimmune insulitis and diabetes in the absence of antigen-specific contact between T cells and islet beta-cells. Eur J Immunol. 1999;29:3410.PubMed CrossRef
    63.Hamilton-Williams EE, Palmer SE, Charlton B, Slattery RM. Beta cell MHC class I is a late requirement for diabetes. Proc Natl Acad Sci USA. 2003;100:6688.PubMed PubMedCentral CrossRef
    64.Lennon GP, Bettini M, Burton AR, et al. T cell islet accumulation in type 1 diabetes is a tightly regulated, cell-autonomous event. Immunity. 2009;31:643.PubMed PubMedCentral CrossRef
    65.Pang S, Zhang L, Wang H, et al. CD8(+) T cells specific for beta cells encounter their cognate antigens in the islets of NOD mice. Eur J Immunol. 2009;39:2716.PubMed CrossRef
    66.Wang J, Tsai S, Shameli A, Yamanouchi J, Alkemade G, Santamaria P. In situ recognition of autoantigen as an essential gatekeeper in autoimmune CD8+ T cell inflammation. Proc Natl Acad Sci USA. 2010;107:9317.PubMed PubMedCentral CrossRef
    67.Zou L, Mendez F, Martin-Orozco N, Peterson EJ. Defective positive selection results in T cell lymphopenia and increased autoimmune diabetes in ADAP-deficient BDC2.5-C57BL/6 mice. Eur J Immunol. 2008;38:986.PubMed PubMedCentral CrossRef
    68.Gagnerault MC, Lanvin O, Pasquier V, et al. Autoimmunity during thymectomy-induced lymphopenia: role of thymus ablation and initial effector T cell activation timing in nonobese diabetic mice. J Immunol. 2009;183:4913.PubMed CrossRef
    69.Bourgeois C, Hao Z, Rajewsky K, Potocnik AJ, Stockinger B. Ablation of thymic export causes accelerated decay of naive CD4 T cells in the periphery because of activation by environmental antigen. Proc Natl Acad Sci USA. 2008;105:8691.PubMed PubMedCentral CrossRef
    70.Berzins SP, Boyd RL, Miller JF. The role of the thymus and recent thymic migrants in the maintenance of the adult peripheral lymphocyte pool. J Exp Med. 1998;187:1839.PubMed PubMedCentral CrossRef
    71.Berzins SP, Godfrey DI, Miller JF, Boyd RL. A central role for thymic emigrants in peripheral T cell homeostasis. Proc Natl Acad Sci USA. 1999;96:9787.PubMed PubMedCentral CrossRef
    72.Adkins B, Williamson T, Guevara P, Bu Y. Murine neonatal lymphocytes show rapid early cell cycle entry and cell division. J. Immunol. 2003;170:4548.PubMed CrossRef
    73.Min B, McHugh R, Sempowski GD, Mackall C, Foucras G, Paul WE. Neonates support lymphopenia-induced proliferation. Immunity. 2003;18:131.PubMed CrossRef
    74.Kieper WC, Jameson SC. Homeostatic expansion and phenotypic conversion of naïve T cells in response to self peptide/MHC ligands. Proc Natl Acad Sci USA. 1999;96:13306.PubMed PubMedCentral CrossRef
    75.Ichii H, Sakamoto A, Hatano M, et al. Role for Bcl-6 in the generation and maintenance of memory CD8+ T cells. Nat Immunol. 2002;3:558.PubMed CrossRef
    76.Le Campion A, Bourgeois C, Lambolez F, et al. Naive T cells proliferate strongly in neonatal mice in response to self-peptide/self-MHC complexes. Proc Natl Acad Sci USA. 2002;99:4538.PubMed PubMedCentral CrossRef
    77.Barthlott T, Kassiotis G, Stockinger B. T cell regulation as a side effect of homeostasis and competition. J Exp Med. 2003;197:451.PubMed PubMedCentral CrossRef
    78.La Gruta NL, Driel IR, Gleeson PA. Peripheral T cell expansion in lymphopenic mice results in a restricted T cell repertoire. Eur J Immunol. 2000;30:3380.PubMed CrossRef
    79.Troy AE, Shen H. Cutting edge: homeostatic proliferation of peripheral T lymphocytes is regulated by clonal competition. J Immunol. 2002;170:672.CrossRef
    80.Shvets A, Chakrabarti R, Gonzalez-Quintial R, Baccala R, Theofilopoulos AN, Prud'homme GJ. Impaired negative regulation of homeostatically proliferating T cells. Blood. 2009;113:622.PubMed PubMedCentral CrossRef
    81.Saoudi A, Seddon B, Fowell D, Mason D. The thymus contains a high frequency of cells that prevent autoimmune diabetes on transfer into prediabetic recipients. J Exp Med. 1996;184:2393.PubMed PubMedCentral CrossRef
    82.Suri-Payer E, Amar AZ, Thornton AM, Shevach EM. CD4+ CD25+ T cells inhibit both the induction and effector function of autoreactive T cells and represent a unique lineage of immunoregulatory cells. J Immunol. 1998;160:1212.PubMed
    83.Ramanathan S, Bihoreau MT, Paterson AD, Marandi L, Gauguier D, Poussier P. Thymectomy and radiation-induced type 1 diabetes in nonlymphopenic BB rats. Diabetes. 2002;51:2975.PubMed CrossRef
    84.Sai P, Senecat O, Martignat L, Gouin E. Neonatal injections of cyclosporin enhance autoimmune diabetes in non-obese diabetic mice. Clin Exp Immunol. 1994;97:138.PubMed PubMedCentral CrossRef
    85.Yarkoni S, Kaminitz A, Sagiv Y, Askenasy N. Targeting of IL-2 receptor with a caspase fusion protein disrupts autoimmunity in prediabetic and diabetic NOD mice. Diabetologia. 2010;53:356.PubMed CrossRef
    86.Tian J, Gregori S, Adorini A, Kaufman DL. The frequency of high avidity T-cells determines the hierarchy of determinant spreading. J Immunol. 2001;166:7144.PubMed CrossRef
    87.Martinic MM, Juedes AE, Bresson D, et al. Minimal impact of a de novo-expressed beta-cell autoantigen on spontaneous diabetes development in NOD mice. Diabetes. 2007;56:1059.PubMed CrossRef
    88.Candeias S, Katz J, Benoist C, Mathis D, Haskins K. Islet-specific T-cell clones from nonobese diabetic mice express heterogeneous T-cell receptors. Proc Natl Acad Sci USA. 1991;88:6167.PubMed PubMedCentral CrossRef
    89.Baker F, Lee M, Chien Y, Davis M. Restricted islet-cell reactive T cell repertoire of early pancreatic islet infiltrates in NOD mice. Proc Natl Acad Sci USA. 2002;2002(99):9374.CrossRef
    90.von Herrath M, Holz A. Pathological changes in the islet milieu precede infiltration of islets and destruction of beta-cells by autoreactive lymphocytes in a transgenic model of virus-induced IDDM. J Autoimmun. 1997;10:231.CrossRef
    91. Aspord C, Rome S, Thivolet C. Early events in islets and pancreatic lymph nodes in autoimmune diabetes. J Autoimmun. 23:27.
    92.Calderon B, Carrero JA, Miller MJ, Unanue ER. Entry of diabetogenic T cells into islets induces changes that lead to amplification of the cellular response. Proc Natl Acad Sci USA. 2011;108:1567.PubMed PubMedCentral CrossRef
    93.Xie JH, Nomura N, Lu M, et al. Antibody-mediated blockade of the CXCR3 chemokine receptor results in diminished recruitment of T helper 1 cells into sites of inflammation. J Leukoc Biol. 2002;73:771.CrossRef
    94.Carvalho-Pinto C, García MI, Gómez L, Ballesteros A, Zaballos A, Flores JM. Leukocyte attraction through the CCR5 receptor controls progress from insulitis to diabetes in non-obese diabetic mice. Eur J Immunol. 2004;34:548.PubMed CrossRef
    95.Yamanouchi J, Verdaguer J, Han B, Amrani A, Serra P, Santamaria P. Cross-priming of diabetogenic T cells dissociated from CTL-induced shedding of beta cell autoantigens. J. Immunol. 2003;171:6900.PubMed CrossRef
    96.Hill NJ, Van Gunst K, Sarvetnick N. Th1 and Th2 pancreatic inflammation differentially affects homing of islet-reactive CD4 cells in nonobese diabetic mice. J. Immunol. 2003;170:1649.PubMed CrossRef
    97.Horwitz MS, Ilic A, Fine C, Rodriguez E, Sarvetnick N. Presented antigen from damaged pancreatic beta cells activates autoreactive T cells in virus-mediated autoimmune diabetes. J. Clin. Invest. 2002;109:79.PubMed PubMedCentral CrossRef
    98.Zou XL, Zhao ZY, Wang YY, Su ZQ, Xiang M. Diabetogenic T cells induce autoimmune diabetes in BALB/c mice. Chin Med Sci J. 2008;23:88.PubMed CrossRef
    99.Kaminitz A, Mizrahi K, Ash S, Ben-Nun A, Askenasy N. Stable activity of diabetogenic cells with age in NOD mice: dynamics of reconstitution and adoptive diabetes transfer in immunocompromised mice. Immunology. 2014;142:465.PubMed PubMedCentral CrossRef
    100.Wen L, Wong FS, Burkly L, Altieri M, Mamalaki C, Kioussis D. Induction of insulitis by glutamic acid decarboxylase peptide-specific and HLA-DQ8-restricted CD4(+) T cells from human DQ transgenic mice. J Clin Invest. 1998;102:947.PubMed PubMedCentral CrossRef
    101.Baxter AG, Mandel TE. Accelerated diabetes in non-obese diabetic (NOD) mice differing in incidence of spontaneous disease. Clin Exp Immunol. 1991;85:464.PubMed PubMedCentral CrossRef
    102.Falcone M, Sarvetnick N. The effect of local production of cytokines in the pathogenesis of insulin-dependent diabetes mellitus. Clin Immunol. 1999;90:2.PubMed CrossRef
    103.Kay TW, Darwiche R, Irawaty W, Chong MM, Pennington HL, Thomas HE. The role of cytokines as effectors of tissue destruction in autoimmunity. Adv Exp Med Biol. 2003;520:73.PubMed CrossRef
    104.Rabinovitch A, Suarez-Pinzon WL. Role of cytokines in the pathogenesis of autoimmune diabetes mellitus. Rev Endocr Metab Disord. 2003;4:291–9.PubMed CrossRef
    105.Kaminitz A, Stein J, Yaniv I, Askenasy N. The vicious cycle of apoptotic beta-cell death in type 1 diabetes. Immunol Cell Biol. 2007;85:582.PubMed CrossRef
    106.Ludewig B, Odermatt B, Landmann S, Hengartner H, Zinkernagel RM. Dendritic cells induce autoimmune diabetes and maintain disease via de novo formation of local lymphoid tissue. J Exp Med. 1998;188:1493.PubMed PubMedCentral CrossRef
    107.Jun HS, Yoon CS, Zbytnuik L, van Rooijen N, Yoon JW. The role of macrophages in T cell-mediated autoimmune diabetes in nonobese diabetic mice. J Exp Med. 1999;189:347.PubMed PubMedCentral CrossRef
    108.Diana J, Simoni Y, Furio L, et al. Crosstalk between neutrophils, B-1a cells and plasmacytoid dendritic cells initiates autoimmune diabetes. Nat Med. 2013;19:65.PubMed CrossRef
    109.Rovere P, Vallinoto C, Bondanza A, et al. Cutting edge: bystander apoptosis triggers dendritic cell maturation and antigen-presenting function. J Immunol. 1998;161:4467.PubMed
    110.Serreze DV, Fleming SA, Chapman HD, Richard SD, Leiter EH, Tisch RM. B lymphocytes are critical antigen-presenting cells for the initiation of T cell-mediated autoimmune diabetes in nonobese diabetic mice. J Immunol. 1998;161:3912.PubMed
    111.Noorchashm H, Noorchashm N, Kern J, Rostami SY, Barker CF, Naji A. B-cells are required for the initiation of insulitis and sialitis in nonobese diabetic mice. Diabetes. 1997;46:941.PubMed CrossRef
    112.Graham KL, Krishnamurthy B, Fynch S, et al. Autoreactive cytotoxic T lymphocytes acquire higher expression of cytotoxic effector markers in the islets of NOD mice after priming in pancreatic lymph nodes. Am J Pathol. 2011;178:2716.PubMed PubMedCentral CrossRef
    113.Haskins K. Pathogenic T-cell clones in autoimmune diabetes: more lessons from the NOD mouse. Adv Immunol. 2005;87:123.PubMed CrossRef
    114.Li L, He Q, Garland A, et al. Beta cell-specific CD4+ T cell clonotypes in peripheral blood and the pancreatic islets are distinct. J Immunol. 2009;183:7585.PubMed CrossRef
    115.Wong CP, Stevens R, Long B, et al. Identical beta cell-specific CD8(+) T cell clonotypes typically reside in both peripheral blood lymphocyte and pancreatic islets. J Immunol. 2007;178:1388.PubMed CrossRef
  • 作者单位:Nadir Askenasy (1)

    1. The Leah and Edward M. Frankel Laboratory of Experimental Bone Marrow Transplantation, 14 Kaplan Street, 49202, Petach Tikva, Israel
  • 刊物主题:Allergology; Immunology; Medicine/Public Health, general; Internal Medicine;
  • 出版者:Springer US
  • ISSN:1559-0755
文摘
The mechanisms of autoimmune reactivity onset in type 1 diabetes (T1D) remain elusive despite extensive experimentation and discussion. We reconsider several key aspects of the early stages of autoimmunity at four levels: islets, pancreatic lymph nodes, thymic function and peripheral immune homeostasis. Antigen presentation is the islets and has the capacity to provoke immune sensitization, either in the process of physiological neonatal β cell apoptosis or as a consequence of cytolytic activity of self-reactive thymocytes that escaped negative regulation. Diabetogenic effectors are efficiently expanded in both the islets and the lymph nodes under conditions of empty lymphoid niches during a period of time coinciding with a synchronized wave of β cell apoptosis surrounding weaning. A major drive of effector cell activation and expansion is inherent peripheral lymphopenia characteristic of neonates, though it remains unclear when is autoimmunity triggered in subjects displaying hyperglycemia in late adolescence. Our analysis suggests that T1D evolves through coordinated activity of multiple physiological mechanisms of stimulation within specific characteristics of the neonate immune system.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700