Thermoanalytical, magnetic and structural investigation of neutral Co(II) complexes with 2,2᾿dipyridylamine and salicylaldehydes
详细信息    查看全文
  • 作者:Christos Papadopoulos ; Beata Cristóvão…
  • 关键词:TG/DTG–DTA ; Cobalt(II) complexes ; Salicylaldehydes ; Dipyridylamine ; Crystal structure ; Magnetics ; TG–MS ; Vyazovkin’s advanced isoconversional method
  • 刊名:Journal of Thermal Analysis and Calorimetry
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:123
  • 期:1
  • 页码:717-729
  • 全文大小:1,162 KB
  • 参考文献:1.Prasad RN, Agrawal A. Synthesis and spectroscopic studies of mixed ligand complexes of cobalt(II) with salicylaldehyde, hydroxyarylketones and beta-diketones. J Indian Chem Soc. 2006;83(1):75–7.
    2.Hussain ST, Ahmad H, Atta MA, Afzal M, Saleem M. High performance liquidchromatography (HPLC), atomic absorption spectroscopy (AAS) and infrared spectroscopy determination and solvent extraction of uranium, using bis(salicylaldehyde) propylene diamine as complexing agent. J Trace Microprobe Tech. 1998;16(2):139–49.
    3.Tangoulis V, Lalia-Kantouri M, Gdaniec M, Papadopoulos Ch, Miletic V, Czapik A. New type of single chain magnet: pseudo-one-dimensional chain of high-spin Co(II) exhibiting ferromagnetic intrachain interactions. Inorg Chem. 2013;52:6559–69.CrossRef
    4.Sajith P, Ummer MT, Mandal N, Mandot SK, Agrawal SL, Bandyopadhyay S, Mukhopadhyay R, D’Cruz B, Deuri AS, Kuriakose P. Synthesis of cobalt complexes and their evaluation as an adhesion promoter in a rubber-steel wire system. J Adhesion Sci Technol. 2005;19(16):1475–91.CrossRef
    5.Chen Q. Bis(4
    omo-2-formylphenolato-K2 O,O′)zinc(II). Acta Cryst. 2006;E62(1):m56–7.
    6.Yang Y-M, Lu P-C, Zhu T-T, Liu C-H. Bis(2-formylphenolato-K2 O, O′)iron(II). Acta Cryst. 2007;E63(6):m1613.
    7.Pessoa JC, Cavaco I, Correira I, Tomaz I, Duarte T, Matias PM. Oxovanadium(IV) complexes with aromatic aldehydes. J Inorg Biochem. 2000;80(1):35–9.CrossRef
    8.Papadopoulos CD, Lalia-Kantouri M, Jaud J, Hatzidimitriou AG. Substitution effect on new Co(II) addition compounds with salicylaldehydes and the nitrogenous bases phen or neoc: crystal and molecular structures of [CoII(5-NO2-salicylaldehyde)2(phen)], [CoII(5-CH3-salicylaldehyde)2(neoc)] and [CoII(5-Cl-salicylaldehyde)2(neoc)]. Inorg Chim Acta. 2007;360(11):3581–9.CrossRef
    9.Lalia-Kantouri M, Papadopoulos CD, Hatzidimitriou AG, Skoulika S. Hetero-heptanuclear (Fe–Na) complexes of salicylaldehydes: crystal and molecular structure of [Fe2(3-OCH3-salo)8.Na5].3OH.8H2O. Struct Chem. 2009;20:177–84.CrossRef
    10.Anastasiadou D, Zianna A, Gdaniec M, Sigalas M, Evdoxia Coutouli-Argyropoulou E, Agnieszka Czapikc A, Lalia-Kantouri M. Coordination mode of 3-methoxy-salicylaldehyde in Zinc(II) complexes with nitrogenous bases: synthesis, structural characterization and theoretical studies. Polyhedron. 2015;87:275–85.CrossRef
    11.Zianna A, Psomas G, Antonis Hatzidimitriou A, Coutouli-Argyropoulou E, Lalia-Kantouri M. Zinc complexes of salicylaldehydes: synthesis, characterization and DNA-binding properties. J Inorg Biochem. 2013;127:116–26.CrossRef
    12.Lalia-Kantouri M, Gdaniec M, Choli-Papadopoulou T, Badounas A, Papadopoulos CD, Czapik A, Geromichalos GD, Sahpazidou D, Tsitouroudi F. Effect of cobalt(II) complexes with dipyridylamine and salicylaldehydes on cultured tumor and non-tumor cells: synthesis, crystal structure investigations and biological activity. J Inorg Biochem. 2012;117:25–34.
    13.Vyazovkin S. Evaluation of the activation energy of thermally stimulated solid-state reactions under an arbitrary variation of the temperature. J Comput Chem. 1997;18:393–402.CrossRef
    14.Zianna A, Vecchio S, Gdaniec M, Czapik A, Hatzidimitriou A, Lalia-Kantouri M. Synthesis, thermal analysis, and spectroscopic and structural characterizations of zinc(II) complexes with salicylaldehydes. J Therm Anal Calorim. 2013;112:455–64.CrossRef
    15.Materazzi S, Vecchio S, Wo LW, De Angelis Curtis S. Thermoanalytical studies of imidazole-substituted coordination compounds. Mn(II)-complexes of bis(1-methylimidazol-2-yl)ketone. J Therm Anal Calorim. 2011;103:59–64.
    16.Vecchio S, Materazzi S, Wo LW, De Angelis Curtis S. Thermoanalytical study of imidazole-substituted coordination compounds: Cu(II)- and Zn(II)-complexes of bis(1-methylimidazol-2-yl)ketone. Thermochim Acta. 2013;568:31–7.CrossRef
    17.Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetic committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.CrossRef
    18.De Angelis Curtis S, Kurdziel K, Materazzi S, Vecchio S. Crystal structure and thermoanalytical study of a manganese (II) complex with 1-allylimidazole. J Therm Anal Calorim. 2008;92(1):109–14.
    19.Dziewulska-Kulaczkowska A, Mazur L, Ferenc W. Thermal, spectroscopic and structural studies of zinc(II) complex with Nicotinamide. J Therm Anal Calorim. 2009;96(1):255–60.CrossRef
    20.Ye HM, Ren N, Li H, Zhang JJ, Sum SJ, Tian L. Synthesis, crystal structure and thermal decomposition kinetics of complex [Nd(BA)3bipy]2. J Therm Anal Calorim. 2010;101(1):205–11.CrossRef
    21.Kahn O. Molecular magnetism. New York: VCH Publisher; 1993. p. 38–43.
    22. Figgis BN, Nyholm RS. A convenient solid for calibration of Gouy magnetic susceptibility apparatus. J Chem Soc. 1958;4190–1.
    23.Madison WI, Bruker Analytical X-ray Systems, Inc., Apex2, (2006), Version 2 User Manual, M86-E01078.
    24.Palatinus L, Chapuis G. Superflip—a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J Appl Crystallogr. 2007;40:786–90.CrossRef
    25.Betteridge PW, Carruthers JR, Cooper RI, Prout K, Watkin DJ. Program CRYSTALS, software for guided crystal structure analysis. J Appl Crystallogr. 2003;36:1487.CrossRef
    26.De Meulenaer J, Tompa H. The absorption correction in crystal structure analysis. Acta Cryst. 1965;19(6):1014–8.CrossRef
    27.Watkin DJ, Prout CK, Pearce LG. CAMERON program. UK: Chemical Crystallographic Laboratory, Oxford University; 1996.
    28.Brown ME. Introduction to thermal analysis. 2nd ed. Dodrecht: 705 Kluwer; 2001.
    29.Vecchio Ciprioti S, Catauro M. Synthesis, structural and thermal behavior study of four Ca-containing silicate gel-glasses: activation energies of their dehydration and dehydroxylation processes. J Therm Anal Calorim. 2015. doi:10.​1007/​s10973-015-4729-3 .
    30.Simon P. Isoconversional methods. Fundamentals, meaning and application. J Therm Anal Calorim. 2004;74:123–32.
    31.Vyazovkin S. Evaluation of the activation energy of thermally stimulated solid-state reactions under an arbitrary variation of the temperature. J Comput Chem. 1997;18:393–402.CrossRef
    32.Vyazovkin S. Modification of the integral isoconversional 725 method to account for variation in the activation energy. J Comput Chem. 2001;22:178–83.CrossRef
    33.Vyazovkin S, Dollimore D. Linear and non linear procedures in isoconversional computations of the activation energy of thermally induced reactions in solids. J Chem Inf Comput Sci. 1996;730(36):42–5.CrossRef
    34.Silverstein RM, Bassler GC, Morvill G. Spectrometric Identification of organic compounds. 6th ed. New York: Wiley; 1998. p. 87.
    35.Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. 5th ed. New York: Wiley; 1997.
    36.Lever AB. Inorganic electronic spectroscopy, 2nd ed. New York: Elsevier; 1984. p. 480, 490.
    37.Earnshaw A. Introduction to magnetochemistry. London: Academic Press; 1968. p. 1–106.CrossRef
    38.Cotton FA, Wilkinson G. Advanced inorganic chemistry. New York: Wiley; 1988. p. 730–1.
    39.Patel KN, Patel NH, Patel KM, Patel MN. Synthesis and characterization of cobalt(II), nickel(II), copper(II) and zinc(II) mixed-ligand complexes. Synth React Inorg Metal Org Chem. 2000;30(5):921–30.CrossRef
    40.O’Coonor JCh. Progress in inorganic chemistry. New York: Wiley; 1982. p. 204–83.
    41.Martin RL. New pathways in inorganic chemistry. Cambridge: Cambridge University Press; 1968. p. 149–231.
    42.Kahn O. Introduction to molecular magnetism and crystal engineering. New York: VCH Publishers Inc.; 1993.
    43.Dziewulska-Kulaczkowska A. Manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) complexes with 4-oxo-4H-1-benzopyran-3-carboxaldehyde: thermal, spectroscopic and magnetic characterization. J Therm Anal. 2010;101(3):1019–26.CrossRef
    44.James LE, Crescentini, Lamberto & Fisher, William B. Process for making a cobalt oxide catalyst. Patent: US 4389339, (A)-1983-06-21.
    45.Wang Xiuying, Zhang Feng, Zhu Xingfu, Xia Baiying, Chen Jiesheng, Qiu Shilun, Li Jixue. Decoration of multiwalled carbon nanotubes with CoO and NiO nanoparticles and studies of their magnetism properties. J Colloid Interface Sci. 2009;337(1):272–7.CrossRef
    46.Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, Opfermann J, Strey R, Anderson HL, Kemmler A, Keuleers R, Janssens J, Desseyn HO, Li C-R, Tang TB, Roduit B, Malek J, Mitsuhashi T. Computational aspects of kinetic analysis. Part A: the ICTAC kinetics project: data, methods, and results. Thermochim Acta. 2000;355:125–43.CrossRef
    47.Khawam A. Application of solid-state kinetics to desolvation reactions. Ph.D (Doctor of Philosophy) thesis, University of Iowa 2007. http://​ir.​uiowa.​edu/​etd/​170 .
  • 作者单位:Christos Papadopoulos (1)
    Beata Cristóvão (2)
    Wieslawa Ferenc (2)
    Antonios Hatzidimitriou (1)
    Stefano Vecchio Ciprioti (3)
    Roberta Risoluti (4)
    Maria Lalia-Kantouri (1)

    1. Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54 124, Thessaloniki, Greece
    2. Department of General and Coordination Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Sq. Maria Curie- Skłodowska 2, 20-031, Lublin, Poland
    3. Department of Basic and Applied Science for Engineering, Sapienza University of Rome, Via del Castro Laurenziano 7, 00161, Rome, Italy
    4. Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Sciences
    Polymer Sciences
    Physical Chemistry
    Inorganic Chemistry
    Measurement Science and Instrumentation
  • 出版者:Akad茅miai Kiad贸, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic
  • ISSN:1572-8943
文摘
Cobalt(II) complexes of 2,2′-dipyridylamine (dpamH) and substituted salicylaldehyde ligands (X-saloH, where X = 5-NO2, CH3, Br and Cl) with the general formula [Co(X-salo)2(dpamH)] (1–4), were synthesized and characterized by physicochemical methods and by spectroscopy (IR and UV–Vis). The octahedral geometry around Co2+ ion and the bidentate chelating mode of the anion X-salo− were proved by single-crystal X-ray diffraction analysis for the complexes [Co(5-CH3-salo)2(dpamH)] (2) and [Co(5-Cl-salo)2(dpamH)] (4). The variable-temperature (76–303 K) magnetic susceptibility measurements showed a paramagnetic nature of the complexes, in accordance with their molecular structure. The simultaneous TG/DTG–DTA technique was used to analyze their thermal behavior under inert atmosphere, with particular attention to determine their thermal degradation pathways, which was found to have a multi-step nature, accompanied by the release of the ligand molecules, as it is partially confirmed by analyzing the amount of gases evolved during heating under experimental conditions comparable with those of TG by using a TG–MS device. Finally, the decomposition kinetics, analyzed by applying the Vyazovkin’s advanced isoconversional method and referred to the elimination of the ligand molecules in the range 200–400 °C (process that was found to be common in all four complexes), confirmed the stability order assessed on the basis of the decomposition temperatures only.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700