Finite Element Method and A Priori Error Estimates for Dirichlet Boundary Control Problems Governed by Parabolic PDEs
详细信息    查看全文
  • 作者:Wei Gong ; Michael Hinze ; Zhaojie Zhou
  • 关键词:Optimal control problem ; Parabolic equation ; Finite element method ; A priori error estimate ; Dirichlet boundary control ; 49J20 ; 49K20 ; 65N15 ; 65N30
  • 刊名:Journal of Scientific Computing
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:66
  • 期:3
  • 页码:941-967
  • 全文大小:617 KB
  • 参考文献:1.Apel, T., Flaig, T.G.: Crank–Nicolson schemes for optimal control problems with evolution equations. SIAM J. Numer. Anal. 50, 1484–1512 (2012)CrossRef MathSciNet MATH
    2.Arada, N., Raymond, J.P.: Dirichlet boundary control of semilinear parabolic equations: part I. Appl. Math. Optim. 45, 125–143 (2002)CrossRef MathSciNet MATH
    3.Belgacem, F.B., Bernardi, C., Fekih, H.E.: Dirichlet boundary control for a parabolic equation with a final observation I: a space–time mixed formulation and penalization. Asymptot Anal. 71, 101–121 (2011)
    4.Berggren, M.: Approximation of very weak solutions to boundary value problems. SIAM J. Numer. Anal. 42, 860–877 (2004)CrossRef MathSciNet MATH
    5.Bramble, J.H., Pasciak, J.E., Schatz, A.H.: The construction of preconditioners for elliptic problems by substructing I. Math. Comput. 47, 103–134 (1986)CrossRef MathSciNet MATH
    6.Casas, E., Mateos, M., Raymond, J.P.: Penalization of Dirichlet optimal control problems. ESAIM Control Optim. Calc. Var. 15, 782–809 (2009)CrossRef MathSciNet MATH
    7.Casas, E., Raymond, J.P.: Error estimates for the numerical approximation of Dirichlet boundary control for semilinear elliptic equations. SIAM J. Control Optim. 45, 1586–1611 (2006)CrossRef MathSciNet MATH
    8.Casas, E., Sokolowski, J.: Approximation of boundary control problems on curved domains. SIAM J. Control Optim. 48, 3746–3780 (2010)CrossRef MathSciNet MATH
    9.Ciarlet, P.G.: The Finite Element Methods for Elliptic Problems. Elsevier, North-Holland (1978)
    10.Deckelnick, K., Günther, A., Hinze, M.: Finite element approximation of Dirichlet boundary control for elliptic PDEs on two- and three-dimensional curved domains. SIAM J. Control Optim. 48, 2798–2819 (2009)CrossRef MathSciNet MATH
    11.French, D.A., King, J.T.: Approximation of an elliptic control problem by the finite element method. Numer. Funct. Anal. Optim. 12, 299–314 (1991)CrossRef MathSciNet MATH
    12.French, D.A., King, J.T.: Analysis of a robust finite element approximation for a parabolic equation with rough boundary data. Math. Comput. 60, 79–104 (1993)CrossRef MathSciNet MATH
    13.Fursikov, A.V., Gunzburger, M.D., Hou, L.S.: Boundary value problems and optimal boundary control for the Navier-Stokes systems: the two-dimensional case. SIAM J. Control Optim. 36, 852–894 (1998)CrossRef MathSciNet MATH
    14.Geveci, T.: On the approximation of the solution of an optimal control problem governed by an elliptic equation. RAIRO Anal. Numer. 13, 313–328 (1979)MathSciNet MATH
    15.Gong, W., Yan, N.N.: A posteriori error estimate for boundary control problems governed by the parabolic partial differential equations. J. Comput. Math. 27, 68–88 (2009)MathSciNet MATH
    16.Gong, W., Yan, N.N.: Mixed finite element method for Dirichlet boundary control problem governed by elliptic PDEs. SIAM J. Control Optim. 49, 984–1014 (2011)CrossRef MathSciNet MATH
    17.Grisvard, P.: Singularities in Boundary Value Problems. Springer, Berlin (1992)MATH
    18.Gunzburger, M.D., Hou, L.S.: Treating inhomogeneous essential boundary conditions in finite element methods and the calculation of boundary stresses. SIAM J. Numer. Anal. 29, 390–424 (1992)CrossRef MathSciNet MATH
    19.Hinze, M.: A variational discretization concept in control constrained optimization: the linear-quadratic case. Comput. Optim. Appl. 30, 45–63 (2005)CrossRef MathSciNet MATH
    20.Hinze, M., Kunisch, K.: Second order methods for boundary control of the instationary Navier–Stokes system. ZAMM Z. Angew. Math. Mech. 84, 171–187 (2004)CrossRef MathSciNet MATH
    21.Hinze, M., Matthes, U.: A note on variational discretization of Neumann boundary control problems. Control Cybern. 38, 577–591 (2009)MathSciNet MATH
    22.Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints, Mathematical Modelling: Theory and Applications, vol. 23. Springer, Berlin (2009)
    23.Kunisch, K., Vexler, B.: Constrained Dirichlet boundary control in \(L^2\) for a class of evolution equations. SIAM J. Control Optim. 46, 1726–1753 (2007)CrossRef MathSciNet MATH
    24.Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971)CrossRef MATH
    25.Lions, J.L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, vol. I, II. Springer, Berlin (1972)CrossRef
    26.Liu, W.B., Ma, H.P., Tang, T., Yan, N.N.: A posteriori error estimates for discontinuous Galerkin time-stepping method for optimal control problems governed by parabolic equations. SIAM J. Numer. Anal. 42, 1032–1061 (2004)CrossRef MathSciNet MATH
    27.Liu, W.B., Yan, N.N.: A posteriori error estimates for optimal control problems governed by parabolic equations. Numer. Math. 93, 497–521 (2003)CrossRef MathSciNet MATH
    28.Liu, W.B., Yan, N.N.: Adaptive Finite Element Methods for Optimal Control Governed by PDEs. Science press, Beijing (2008)
    29.May, S., Rannacher, R., Vexler, B.: Error analysis fo a finite element approximation of elliptic Dirichlet boundary control problems. SIAM J. Control Optim. 51(3), 2585–2611 (2013)CrossRef MathSciNet MATH
    30.Meidner, D., Vexler, B.: A priori error estimates for space–time finite element discretization of parabolic optimal control problems. Part I: problems without control constraints. SIAM J. Control Optim. 47(3), 1150–1177 (2008)CrossRef MathSciNet MATH
    31.Meidner, D., Vexler, B.: A priori error estimates for space–time finite element discretization of parabolic optimal control problems. Part II: problems with control constraints. SIAM J. Control Optim. 47(3), 1301–1329 (2008)CrossRef MathSciNet MATH
    32.Meidner, D., Vexler, B.: A priori error analysis of the Petrov-Galerkin Crank–Nicolson scheme for parabolic optimal control problems. SIAM J. Control Optim. 49(5), 2183–2211 (2011)CrossRef MathSciNet MATH
    33.Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (2006)MATH
    34.Vexler, B.: Finite element approximation of elliptic Dirichlet optimal control problems. Numer. Funct. Anal. Optim. 28, 957–973 (2007)CrossRef MathSciNet MATH
    35.von Daniels, N., Hinze, M., Vierling, M.: Crank-Nicolson time stepping and variational discretization of control-constrained parabolic optimal control problems. SIAM J. Control Optim. 53(3), 1182–1198 (2015)
    36.Winther, R.: Error estimates for a Galerkin approximation of a parabolic control problem. Ann. Math. Pura App. 117(4), 173–206 (1978)CrossRef MathSciNet MATH
  • 作者单位:Wei Gong (1)
    Michael Hinze (2)
    Zhaojie Zhou (3)

    1. LSEC, Institute of Computational Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
    2. Schwerpunkt Optimierung und Approximation, Universität Hamburg, Bundesstrasse 55, 20146, Hamburg, Germany
    3. School of Mathematics Sciences, Shandong Normal University, Jinan, 250014, China
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Algorithms
    Computational Mathematics and Numerical Analysis
    Applied Mathematics and Computational Methods of Engineering
    Mathematical and Computational Physics
  • 出版者:Springer Netherlands
  • ISSN:1573-7691
文摘
Finite element approximations of Dirichlet boundary control problems governed by parabolic PDEs on convex polygonal domains are studied in this paper. The existence of a unique solution to optimal control problems is guaranteed based on very weak solution of the state equation and \(L^2(0,T;L^2(\varGamma ))\) as control space. For the numerical discretization of the state equation we use standard piecewise linear and continuous finite elements for the space discretization of the state, while a dG(0) scheme is used for time discretization. The Dirichlet boundary control is realized through a space–time \(L^2\)-projection. We consider both piecewise linear, continuous finite element approximation and variational discretization for the controls and derive a priori \(L^2\)-error bounds for controls and states. We finally present numerical examples to support our theoretical findings. Keywords Optimal control problem Parabolic equation Finite element method A priori error estimate Dirichlet boundary control

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700