Multiscale methods for gore curvature calculations from FSI modeling of spacecraft parachutes
详细信息    查看全文
  • 作者:Kenji Takizawa (1)
    Tayfun E. Tezduyar (2)
    Ryan Kolesar (2)
    Cody Boswell (2)
    Taro Kanai (1)
    Kenneth Montel (2)
  • 关键词:Spacecraft parachutes ; Gore curvature ; Fluid–structure interaction ; Multiscale methods ; Sequentially ; coupled FSI ; NURBS meshes ; Orion main parachutes ; Orion drogue parachutes ; Reefed stages
  • 刊名:Computational Mechanics
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:54
  • 期:6
  • 页码:1461-1476
  • 全文大小:21,272 KB
  • 参考文献:1. Takizawa K, Tezduyar TE (2012) Computational methods for parachute fluid-structure interactions. Arch Comput Methods Eng 19:125-69. doi:10.1007/s11831-012-9070-4 CrossRef
    2. Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid–structure interaction: methods and applications. Wiley, New York. ISBN 978-0470978771
    3. Takizawa K, Spielman T, Tezduyar TE (2011) Space-time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters. Comput Mech 48:345-64. doi:10.1007/s00466-011-0590-9 CrossRef
    4. Takizawa K, Fritze M, Montes D, Spielman T, Tezduyar TE (2012) Fluid–structure interaction modeling of ringsail parachutes with disreefing and modified geometric porosity. Comput Mech 50:835-54. doi:10.1007/s00466-012-0761-3 CrossRef
    5. Takizawa K, Montes D, Fritze M, McIntyre S, Boben J, Tezduyar TE (2013) Methods for FSI modeling of spacecraft parachute dynamics and cover separation. Math Models Methods Appl Sci 23:307-38. doi:10.1142/S0218202513400058 CrossRef
    6. Takizawa K, Tezduyar TE, Boben J, Kostov N, Boswell C, Buscher A (2013) Fluid–structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity. Comput Mech 52:1351-364. doi:10.1007/s00466-013-0880-5 CrossRef
    7. Takizawa K, Tezduyar TE, Boswell C, Kolesar R, Montel K (2014) FSI modeling of the reefed stages and disreefing of the Orion spacecraft parachutes. Comput Mech. doi:10.1007/s00466-014-1052-y
    8. Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1-4. doi:10.1016/S0065-2156(08)70153-4 CrossRef
    9. Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94:339-51. doi:10.1016/0045-7825(92)90059-S CrossRef
    10. Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94:353-71. doi:10.1016/0045-7825(92)90060-W CrossRef
    11. Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43:555-75. doi:10.1002/fld.505 CrossRef
    12. Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space-time finite elements: solution techniques. Int J Numer Methods Fluids 54:855-00. doi:10.1002/fld.1430 CrossRef
    13. Takizawa K, Tezduyar TE (2011) Multiscale space-time fluid–structure interaction techniques. Comput Mech 48:247-67. doi:10.1007/s00466-011-0571-z CrossRef
    14. Takizawa K, Tezduyar TE (2012) Space-time fluid–structure interaction methods. Math Models Methods Appl Sci 22:1230001. doi:10.1142/S0218202512300013 CrossRef
  • 作者单位:Kenji Takizawa (1)
    Tayfun E. Tezduyar (2)
    Ryan Kolesar (2)
    Cody Boswell (2)
    Taro Kanai (1)
    Kenneth Montel (2)

    1. Department of Modern Mechanical Engineering and Waseda Institute for Advanced Study, Waseda University, 1-6-1 Nishi-Waseda, Shinjuku-ku, Tokyo?, 169-8050, Japan
    2. Mechanical Engineering, Rice University -MS 321, 6100 Main Street, Houston, TX?, 77005, USA
  • ISSN:1432-0924
文摘
There are now some sophisticated and powerful methods for computer modeling of parachutes. These methods are capable of addressing some of the most formidable computational challenges encountered in parachute modeling, including fluid–structure interaction (FSI) between the parachute and air flow, design complexities such as those seen in spacecraft parachutes, and operational complexities such as use in clusters and disreefing. One should be able to extract from a reliable full-scale parachute modeling any data or analysis needed. In some cases, however, the parachute engineers may want to perform quickly an extended or repetitive analysis with methods based on simplified models. Some of the data needed by a simplified model can very effectively be extracted from a full-scale computer modeling that serves as a pilot. A good example of such data is the circumferential curvature of a parachute gore, where a gore is the slice of the parachute canopy between two radial reinforcement cables running from the parachute vent to the skirt. We present the multiscale methods we devised for gore curvature calculation from FSI modeling of spacecraft parachutes. The methods include those based on the multiscale sequentially-coupled FSI technique and using NURBS meshes. We show how the methods work for the fully-open and two reefed stages of the Orion spacecraft main and drogue parachutes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700