Hatching Asynchrony and Spring Climatic Conditions in the European Roller
详细信息    查看全文
  • 作者:Deseada Parejo ; Jesús M. Avilés ; Mónica Expósito
  • 关键词:Adaptation ; Coracias garrulus ; Environmental heterogeneity ; Fluctuating selection ; Hatching asynchrony
  • 刊名:Evolutionary Biology
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:42
  • 期:4
  • 页码:443-451
  • 全文大小:692 KB
  • 参考文献:Amundsen, T., & Slagsvold, T. (1996). Lack’s brood reduction hypothesis and avian hatching asynchrony: What’s next? Oikos, 76, 613-20.CrossRef
    Arnold, T. W. (2011). An experimental study of fledging success in American coots (Fulica americana): effects of brood size, food availability, and hatching asynchrony. Auk, 128, 737-45.CrossRef
    Avilés, J. M., & Parejo, D. (1997). Dieta de los pollos de carraca (Coracias garrulus) en una zona mediterránea (Extremadura, suroeste de Espa?a). Ardeola, 44, 234-39.
    Avilés, J. M., Parejo, D., & Rodríguez, J. (2011). Parental favouritism strategies in the asynchronously hatching European roller (Coracias garrulus). Behavioral Ecology and Sociobiology, 65, 1549-557.CrossRef
    Avilés, J. M., Sánchez, J. M., Sánchez, A., & Parejo, D. (1999). Breeding biology of the roller Coracias garrulus in farming areas of the southwest Iberian Peninsula. Bird Study, 46, 217-23.CrossRef
    Bortolotti, G. R., & Wiebe, K. L. (1993). Incubation behavior and hatching patterns in the American kestrel Falco sparverius. Ornis Scandinavica, 24, 41-7.CrossRef
    Chaine, A. S., & Lyon, B. E. (2008). Adaptive plasticity in female mate choice dampens sexual selection on male ornaments in the lark bunting. Science, 319, 459-62.CrossRef PubMed
    Clark, A. B., & Wilson, D. S. (1981). Avian breeding adaptations: Hatching asynchrony, brood reduction, and nest failure. Quarterly Review of Biology, 56, 253-77.CrossRef
    Coca-Abia, M. M., Tenas-Pérez, I., Giménez-Legarre, S., & García-Mu?oz, E. (2010). A preliminary study of the biology of the grasshopper Calliptamus wattenwylianus (Orthoptera; Acrididae). Boletín de Sanidad Vegetal, Plagas, 36, 149-55.
    Cockburn, A., Osmond, H. L., & Double, M. C. (2008). Swingin-in the rain: Condition dependence and sexual selection in a capricious world. Proceedings of the Royal Society, Series B, 275, 605-12.CrossRef
    Cramp, S., & Simmons, K. E. L. (1988). The birds of the western Palearctic. Oxford: Oxford University Press.
    Etterson, J. R. (2004). Evolutionary potential of Chamaecrista fasciculata in relation to climate change. 1. Clinal patterns of selection along an environmental gradient in the great plains. Evolution, 58, 1446-458.CrossRef PubMed
    Forbes, L. S. (1994). The good, the bad and the ugly: Lack’s brood reduction hypothesis and experimental design. Journal of Avian Biology, 25, 338-43.CrossRef
    Frampton, G. K., Van den Brink, P. J., & Gould, P. J. L. (2000). Effects of spring drought and irrigation on farmland arthropods in southern Britain. Journal of Applied Ecology, 37, 865-83.CrossRef
    Garant, D., Kruuk, L. E. B., McCleery, R. H., & Sheldon, B. C. (2004). Evolution in a changing environment: A case study with great tit fledging mass. The American Naturalist, 164, E115–E129.CrossRef PubMed
    Gilby, A. J. (2011). The adaptive benefit of hatching asynchrony in wild zebra finches. Animal Behaviour, 82, 479-84.CrossRef
    Gordo, O., Sanz, J. J., & Lobo, J. M. (2010). Determining the environmental factors underlying the spatial variability of insect appearance phenology for the honey bee, Apis mellifera, and the small white, Pieris rapae. Journal of Insect Science, 10, 1-1.CrossRef
    Grant, P. R., & Grant, B. R. (2002). Unpredictable evolution in a 30-year study of Darwin’s finches. Science, 296, 707-11.CrossRef PubMed
    Hebert, P. N., & McNeil, R. (1999). Hatching asynchrony and food stress in ring-billed gulls: An experimental study. Canadian Journal of Zoology, 77, 515-23.CrossRef
    Hussell, D. J. T. (1972). Factors affecting clutch size in arctic passerine. Ecological Monograph, 42, 317-64.CrossRef
    Hussell, D. J. T. (1985). On the adaptive basis for hatching asynchrony: Brood reduction, nest failure and asynchronous hatching in snow buntings. Ornis Scandinavica, 16, 205-12.CrossRef
    Illera, J. C., & Díaz, M. (2006). Reproduction in an endemic bird of a semiarid island: a food-mediated process. Journal of Avian Biology, 37, 447-56.CrossRef
    IPCC. (2007). Summary for policymakers. In S. Solomon, D. Qin, M. Manning, Z. Chen, & M. Marquis (Eds.), Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change (pp. 1-5). Cambridge: Cambridge University Press.
    Kontiainen, P., Pietiainen, H., Karell, P., Pihlaja, T., & Brommer, J. E. (2010). Hatching asynchrony is an individual property of female Ural owls which improves nestling survival. Behavioral Ecology, 21, 722-29.CrossRef
    Lack, D. (1966). Population studies of birds. Oxford: Clarendon.
    Li, S. H., & Brown, J. L. (1999). Influence of climate on reproductive success in Mexican Jays. Auk, 116, 924-36.CrossRef
    Lindstr?m, J. (1999). Early development and fitness in birds and mammals. Trends in Ecology & Evolution, 14, 343-48.CrossRef
    Magrath, R. D. (1989). Hatching asynchrony and reproductive success in the blackbird. N
  • 作者单位:Deseada Parejo (1) (2)
    Jesús M. Avilés (2)
    Mónica Expósito (2)

    1. área de Zoología, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06006, Badajoz, Spain
    2. Estación Experimental de Zonas áridas, CSIC, Ctra. de Sacramento s/n, La Ca?ada de San Urbano, 04120, Almería, Spain
  • 刊物主题:Evolutionary Biology; Ecology; Developmental Biology; Human Genetics; Animal Genetics and Genomics;
  • 出版者:Springer US
  • ISSN:1934-2845
文摘
Hatching asynchrony (HA hereafter) leads to patent age and size hierarchies within broods of altricial birds, disadvantaging runts through a reduced condition/survival. The function of HA is controversial, although a general hypothesis states that HA would be an adaptive maternal mechanism for maximizing reproductive output under particular ecological conditions. Accordingly, when ecological conditions are not favourable, asynchronous broods would outperform synchronous broods because the formers would allow for an adaptive adjustment of brood size. A poorly untested prediction emerging from this hypothesis is that the adaptive value of HA should change with environmental conditions in relatively long time windows within a population. Using data from 8 years of a population of the asynchronous European roller Coracias garrulus, we studied variation in HA and fecundity selection on HA. Hatching span (ranging from 1 to 8 days) was longer in larger broods and later in the breeding season. Interestingly, we found that asynchronous broods were more fecund than synchronous ones in colder and drier years in April, which is the previous month to reproduction, and the opposite was true in years with warmer but rainier Aprils. Given that warmer and rainier Aprils relate to advanced and increased arthropod availability in the Mediterranean region, these results would suggest that HA in rollers might function as an adaptive trait that provides parents of asynchronous broods with some benefits in years with low productivity, in agreement with the Lack’s brood reduction hypothesis, and illustrate the relevance of studying the adaptive value of HA over gradients of environmental conditions. Keywords Adaptation Coracias garrulus Environmental heterogeneity Fluctuating selection Hatching asynchrony

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700