High-power and long-life supercapacitive performance of hierarchical, 3-D urchin-like W18O49 nanostructure electrodes
详细信息    查看全文
  • 作者:Sangbaek Park ; Hyun-Woo Shim ; Chan Woo Lee ; Hee Jo Song ; Jae-Chan Kim…
  • 关键词:hierarchical structure ; W18O49 ; high ; power ; long cycle life ; supercapacitor
  • 刊名:Nano Research
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:9
  • 期:3
  • 页码:633-643
  • 全文大小:2,423 KB
  • 参考文献:[1]Zhu, Y. W.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W. W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M. et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011, 332, 1537–1541.CrossRef
    [2]El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012, 335, 1326–1330.CrossRef
    [3]Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.CrossRef
    [4]Hao, L.; Li, X. L.; Zhi, L. J. Carbonaceous electrode materials for supercapacitors. Adv. Mater. 2013, 25, 3899–3904.CrossRef
    [5]Naoi, A.; Naoi, W.; Aoyagi, S.; Miyamoto, J. I.; Kamino, T. New generation “nanohybrid supercapacitor”. Acc. Chem. Res. 2013, 46, 1075–1083.CrossRef
    [6]Oh, S. H.; Nazar, L. F. Direct synthesis of electroactive mesoporous hydrous crystalline RuO2 templated by a cationic surfactant. J. Mater. Chem. 2010, 20, 3834–3839.CrossRef
    [7]Hu, C. C.; Chang, K. H.; Lin, M. C.; Wu, Y. T. Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett. 2006, 6, 2690–2695.CrossRef
    [8]Sugimoto, W.; Iwata, H.; Yokoshima, K.; Murakami, Y.; Takasu, Y. Proton and electron conductivity in hydrous ruthenium oxides evaluated by electrochemical impedance spectroscopy: The origin of large capacitance. J. Phys. Chem. B 2005, 109, 7330–7338.CrossRef
    [9]Lu, Q.; Lattanzi, M. W.; Chen, Y. P.; Kou, X. M.; Li, W. F.; Fan, X.; Unruh, K. M.; Chen, J. G.; Xiao, J. Q. Supercapacitor electrodes with high-energy and power densities prepared from monolithic NiO/Ni nanocomposites. Angew. Chem., Int. Ed. 2011, 50, 6847–6850.CrossRef
    [10]Xue, T.; Xu, C. L.; Zhao, D. D.; Li, X. H.; Li, H. L. Electrodeposition of mesoporous manganese dioxide supercapacitor electrodes through self-assembled triblock copolymer templates. J. Power Sources 2007, 164, 953–958.CrossRef
    [11]Wang, B.; Chen, J. S.; Wang, Z. Y.; Madhavi, S.; Lou, X. W. Green synthesis of NiO nanobelts with exceptional pseudo-capacitive properties. Adv. Energy Mater. 2012, 2, 1188–1192.CrossRef
    [12]Xia, X. H.; Tu, J. P.; Mai, Y. J.; Wang, X. L.; Gu, C. D.; Zhao, X. B. Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance. J. Mater. Chem. 2011, 21, 9319–9325.CrossRef
    [13]Xie, K. Y.; Li, J.; Lai, Y. Q.; Lu, W.; Zhang, Z. A.; Liu, Y. X.; Zhou, L. M.; Huang, H. T. Highly ordered iron oxide nanotube arrays as electrodes for electrochemical energy storage. Electrochem. Commun. 2011, 13, 657–660.CrossRef
    [14]Wang, Y. G.; Li, H. Q.; Xia, Y. Y. Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Adv. Mater. 2006, 18, 2619–2623.CrossRef
    [15]Kim, J. H.; Lee, Y. S.; Sharma, A. K.; Liu, C. G. Polypyrrole/carbon composite electrode for high-power electrochemical capacitors. Electrochim. Acta 2006, 52, 1727–1732.CrossRef
    [16]Ghaemia, M.; Ataherian, F.; Zolfaghari, A.; Jafari, S. M. Charge storage mechanism of sonochemically prepared MnO2 as supercapacitor electrode: Effects of physisorbed water and proton conduction. Electrochim. Acta 2008, 53, 4607–4614.CrossRef
    [17]Xu, J.; Gao, L.; Cao, J. Y.; Wang, W. C.; Chen, Z. D. Preparation and electrochemical capacitance of cobalt oxide (Co3O4) nanotubes as supercapacitor material. Electrochim. Acta 2010, 56, 732–736.CrossRef
    [18]Rajeswari, J.; Kishore, P. S.; Viswanathan, B.; Varadarajan, T. K. One-dimensional MoO2 nanorods for supercapacitor applications. Electrochem. Commun. 2009, 11, 572–575.CrossRef
    [19]Yoon, S.; Kang, E.; Kim, J. K.; Lee, C. W.; Lee, J. Development of high-performance supercapacitor electrodes using novel ordered mesoporous tungsten oxide materials with high electrical conductivity. Chem. Commun. 2011, 47, 1021–1023.CrossRef
    [20]Leftheriotis, G.; Papaefthimiou, S.; Yianoulis, P.; Siokou, A. Effect of the tungsten oxidation states in the thermal coloration and bleaching of amorphous WO3 films. Thin Solid Films 2001, 384, 298–306.CrossRef
    [21]Zou, B. X.; Liang, Y.; Liu, X. X.; Diamond, D.; Lau, K. T. Electrodeposition and pseudocapacitive properties of tungsten oxide/polyaniline composite. J. Power Sources 2011, 196, 4842–4848.CrossRef
    [22]Wang, D.; Li, J.; Cao, X.; Pang, G. S.; Feng, S. H. Hexagonal mesocrystals formed by ultra-thin tungsten oxide nanowires and their electrochemical behaviour. Chem. Commun. 2010, 46, 7718–7720.CrossRef
    [23]Huang, C. C.; Xing, W.; Zhuo, S. P. Capacitive performances of amorphous tungsten oxide prepared by microwave irradiation. Scripta Mater. 2009, 61, 985–987.CrossRef
    [24]Lu, X. H.; Zhai, T.; Zhang, X. H.; Shen, Y. Q.; Yuan, L. Y.; Hu, B.; Gong, L.; Chen, J.; Gao, Y. H.; Zhou, J. et al. WO3–x @Au@MnO2 core–shell nanowires on carbon fabric for high-performance flexible supercapacitors. Adv. Mater. 2012, 24, 938–944.CrossRef
    [25]Kulesza, P. J.; Faulkner, L. R. Electrocatalysis at a novel electrode coating of nonstoichiometric tungsten(VI, V) oxide aggregates. J. Am. Chem. Soc. 1988, 110, 4905–4913.CrossRef
    [26]Pauporté, T. A simplified method for WO3 electrodeposition. J. Electrochem. Soc. 2002, 149, C539–C545.
    [27]Zou, B. X.; Liu, X. X.; Diamond, D.; Lau, K. T. Electrochemical synthesis of WO3/PANI composite for electrocatalytic reduction of iodate. Electrochim. Acta 2010, 55, 3915–3920.CrossRef
    [28]Khyzhun, O. Y.; Solonin, Y. M. Electronic structure of the monoclinic and hexagonal trioxides of tungsten and hexagonal hydrogen tungsten bronze H0.24WO3. Powder Metall. Met. Ceram. 2000, 39, 287–294.CrossRef
    [29]Li, Y.; Bando, Y.; Golberg, D. Quasi-aligned single-crystalline W18O49 nanotubes and nanowires. Adv. Mater. 2003, 15, 1294–1296.CrossRef
    [30]Liu, F.; Mo, F. Y.; Jin, S. Y.; Li, L.; Chen, Z. S.; Sun, R.; Chen, J.; Deng, S. Z.; Xu, N. S. A novel lift-off method for fabricating patterned and vertically-aligned W18O49 nanowire arrays with good field emission performance. Nanoscale 2011, 3, 1850–1854.CrossRef
    [31]Kojin, F.; Mori, M.; Morishita, T.; Inagaki, M. New visible light active photocatalyst, carbon-coated W18O49. Chem. Lett. 2006, 35, 388–389.CrossRef
    [32]Thangala, J.; Chen, Z. Q.; Chin, A.; Ning, C. Z.; Sunkara, M. K. Phase transformation studies of metal oxide nanowires. Cryst. Growth Des. 2009, 9, 3177–3182.CrossRef
    [33]Hong, K. Q.; Xie, M. H.; Hu, R.; Wu, H. S. Synthesizing tungsten oxide nanowires by a thermal evaporation method. Appl. Phys. Lett. 2007, 90, 173121–173123.
    [34]Lou, X. W.; Zeng, H. C. An inorganic route for controlled synthesis of W18O49 nanorods and nanofibers in solution. Inorg. Chem. 2003, 42, 6169–6171.CrossRef
    [35]Frey, G. L.; Rothschild, A.; Sloan, J.; Rosentsveig, R.; Popovitz-Biro, R.; Tenne, R. Investigations of nonstoichiometric tungsten oxide nanoparticles. J. Solid State Chem. 2001, 162, 300–314.CrossRef
    [36]Zhou, Y. Y.; Ko, S.; Lee, C. W.; Pyo, S. G.; Kim, S. K.; Yoon, S. Enhanced charge storage by optimization of pore structure in nanocomposite between ordered mesoporous carbon and nanosized WO3-x . J. Power Sources 2013, 244, 777–782.CrossRef
    [37]Tian, Y. Y.; Cong, S.; Su, W. M.; Chen, H. Y.; Li, Q. W.; Geng, F. X.; Zhao, Z. G. Synergy of W18O49 and polyaniline for smart supercapacitor electrode integrated with energy level indicating functionality. Nano Lett. 2014, 14, 2150–2156.CrossRef
    [38]Jo, C.; Hwang, J.; Song, H.; Dao, A. H.; Kim, Y. T.; Lee, S. H.; Hong, S. W.; Yoon, S.; Lee, J. Block-copolymerassisted one-pot synthesis of ordered mesoporous WO3-x /carbon nanocomposites as high-rate-performance electrodes for pseudocapacitors. Adv. Funct. Mater. 2013, 23, 3747–3754.CrossRef
    [39]Xiao, X.; Ding, T. P.; Yuan, L. Y.; Shen, Y. Q.; Zhong, Q. Z.; Zhang, X. H.; Cao, Y. Z.; Hu, B.; Zhai, T.; Gong, L. et al. WO3-x /MoO3-x core/shell nanowires on carbon fabric as an anode for all-solid-state asymmetric supercapacitors. Adv. Energy Mater. 2012, 2, 1328–1332.CrossRef
    [40]Xi, G. C.; Ouyang, S. X.; Li, P.; Ye, J. H.; Ma, Q.; Su, N.; Bai, H.; Wang, C. Ultrathin W18O49 nanowires with diameters below 1 nm: Synthesis, near-infrared absorption, photoluminescence, and photochemical reduction of carbon dioxide. Angew. Chem., Int. Ed. 2012, 51, 2395–2399.CrossRef
    [41]Bai, H.; Su, N.; Li, W. T.; Zhang, X.; Yan, Y.; Li, P.; Ouyang, S. X.; Ye, J. H.; Xi, G. C. W18O49 nanowire networks for catalyzed dehydration of isopropyl alcohol to propylene under visible light. J. Mater. Chem. A 2013, 1, 6125–6129.CrossRef
    [42]Xi, G. C.; Ye, J. H.; Ma, Q.; Su, N.; Bai, H.; Wang, C. In situ growth of metal particles on 3D urchin-like WO3 nanostructures. J. Am. Chem. Soc. 2012, 134, 6508–6511.CrossRef
    [43]Yella, A.; Tahir, M. N.; Meuer, S.; Zentel, R.; Berger, R.; Panthöfer, M.; Tremel, W. Synthesis, characterization, and hierarchical organization of tungsten oxide nanorods: Spreading driven by marangoni flow. J. Am. Chem. Soc. 2009, 131, 17566–17575.CrossRef
    [44]Huang, Z. F.; Song, J. J.; Pan, L.; Zhang, X. W.; Wang, L.; Zou, J. J. Tungsten oxides for photocatalysis, electrochemistry, and phototherapy. Adv. Mater. 2015, 27, 5309–5327.CrossRef
    [45]Zhang, Y.; Chen, Y. G.; Liu, H.; Zhou, Y. Q.; Li, R. Y.; Cai, M.; Sun, X. L. Three-dimensional hierarchical structure of single crystalline tungsten oxide nanowires: Construction, phase transition, and voltammetric behavior. J. Phys. Chem. C 2009, 113, 1746–1750.CrossRef
    [46]Park, K. S.; Min, K. M.; Jin, Y. H.; Seo, S. D.; Lee, G. H.; Shim, H. W.; Kim, D. W. Enhancement of cyclability of urchin-like rutile TiO2 submicron spheres by nanopainting with carbon. J. Mater. Chem. 2012, 22, 15981–15986.CrossRef
    [47]Shim, H. W.; Lim, A. H.; Kim, J. C.; Lee, G. H.; Kim, D. W. Hydrothermal realization of a hierarchical, flowerlike MnWO4@MWCNTs nanocomposite with enhanced reversible Li storage as a new anode material. Chem.—Asian J. 2013, 8, 2851–2858.CrossRef
    [48]Xu, L.; Shen, J. M.; Lu, C. L.; Chen, Y. P.; Hou, W. H. Selfassembled three-dimensional architectures of Y2(WO4)3:Eu: Controlled synthesis, growth mechanism, and shape-dependent luminescence properties. Cryst. Growth Des. 2009, 9, 3129–3136.CrossRef
    [49]Volanti, D. P.; Orlandi, M. O.; Andrés, J.; Longo, E. Efficient microwave-assisted hydrothermal synthesis of CuO sea urchin-like architectures via a mesoscale self-assembly. CrystEngComm 2010, 12, 1696–1699.CrossRef
    [50]Zhang, Q. F.; Dandeneau, C. S.; Zhou, X. Y.; Cao, G. Z. ZnO nanostructures for dye-sensitized solar cells. Adv. Mater. 2009, 21, 4087–4108.CrossRef
    [51]Wang, L.; Liu, X. W.; Lu, G. Z.; Wang, Y. Q. Evolution of SnO2 nanoparticles into 3D nanoflowers through crystal growth in aqueous solution and its optical properties. Mater. Chem. Phys. 2011, 127, 114–119.CrossRef
    [52]Sun, Z. Q.; Kim, J. H.; Zhao, Y.; Bijarbooneh, F.; Malgras, V.; Lee, Y.; Kang, Y. M.; Dou, S. X. Rational design of 3D dendritic TiO2 nanostructures with favorable architectures. J. Am. Chem. Soc. 2011, 133, 19314–19317.CrossRef
    [53]Guo, C. S.; Yin, S.; Yan, M.; Kobayashi, M.; Kakihana, M.; Sato, T. Morphology-controlled synthesis of W18O49 nanostructures and their near-infrared absorption properties. Inorg. Chem. 2012, 51, 4763–4771.CrossRef
    [54]Mullin, J. W. Crystallization, 3rd ed.; Butterworth-Heinemann: Oxford, 1993.
    [55]Zhou, Y. Q.; Zhang, Y.; Li, R. Y.; Cai, M.; Sun, X. L. Onestep in situ synthesis and characterization of W18O49@carbon coaxial nanocables. J. Mater. Res. 2009, 24, 1833–1841.CrossRef
    [56]Faughnan, B. W.; Crandall, R. S.; Heyman, P. M. Electrochromic in WO3 amorphous films. RCA Rev. 1975, 36, 177–197.
    [57]Hou, L. R.; Yuan, C. Z.; Yang, L.; Shen, L. F.; Zhang, F.; Zhang, X. G. Urchin-like Co3O4 microspherical hierarchical superstructures constructed by one-dimension nanowires toward electrochemical capacitors. RSC Adv. 2011, 1, 1521–1526.CrossRef
    [58]Wang, H. L.; Holt, C. M. B.; Li, Z.; Tan, X. H.; Amirkhiz, B. S.; Xu, Z. W.; Olsen, B. C.; Stephenson, T.; Mitlin, D. Graphene-nickel cobaltite nanocomposite asymmetrical supercapacitor with commercial level mass loading. Nano Res. 2012, 5, 605–617.CrossRef
    [59]Cheng, Q.; Tang, J.; Ma, J.; Zhang, H.; Shinya, N.; Qin, L. C. Graphene and nanostructured MnO2 composite electrodes for supercapacitors. Carbon 2011, 49, 2917–2925.CrossRef
    [60]Xia, X. H.; Tu, J. P.; Zhang, Y. Q.; Mai, Y. J.; Wang, X. L.; Gu, C. D.; Zhao, X. B. Freestanding Co3O4 nanowire array for high performance supercapacitors. RSC Adv. 2012, 2, 1835–1841.CrossRef
    [61]Fan, Z. J.; Yan, J.; Wei, T.; Zhi, L. J.; Ning, G. Q.; Li, T. Y.; Wei, F. Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv. Funct. Mater. 2011, 21, 2366–2375.CrossRef
    [62]Park, S.; Shim, H. W.; Lee, C. W.; Song, H. J.; Park, I. J.; Kim, J. C.; Hong, K. S.; Kim, D. W. Tailoring uniform γ-MnO2 nanosheets on highly conductive three-dimensional current collectors for high-performance supercapacitor electrodes. Nano Res. 2015, 8, 990–1004.CrossRef
  • 作者单位:Sangbaek Park (1)
    Hyun-Woo Shim (2)
    Chan Woo Lee (1)
    Hee Jo Song (1)
    Jae-Chan Kim (2)
    Dong-Wan Kim (2)

    1. Department of Materials Science and Engineering, Seoul National University, Seoul, 151-744, Republic of Korea
    2. School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 136-713, Republic of Korea
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
We report the facile, one-pot synthesis of 3-D urchin-like W18O49 nanostructures (U-WO) via a simple solvothermal approach. An excellent supercapacitive performance was achieved by the U-WO because of its large Brunauer–Emmett–Teller (BET) specific surface area (ca. 123 m2·g–1) and unique morphological and structural features. The U-WO electrodes not only exhibit a high rate-capability with a specific capacitance (Csp) of ~235 F·g–1 at a current density of 20 A·g–1, but also superior long-life performance for 1,000 cycles, and even up to 7,000 cycles, showing ~176 F·g–1 at a high current density of 40 A·g–1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700