Fine root dynamics of trembling aspen in boreal forest and aspen parkland in central Canada
详细信息    查看全文
  • 作者:Bradley D. Pinno (1)
    Scott D. Wilson (1)
    Diego F. Steinaker (2)
    Ken C. J. Van Rees (3)
    Shawn A. McDonald (3)
  • 关键词:minirhizotron ; Populus tremuloides ; root length ; fine root biomass ; root turnover
  • 刊名:Annals of Forest Science
  • 出版年:2010
  • 出版时间:January 2010
  • 年:2010
  • 卷:67
  • 期:7
  • 页码:710
  • 全文大小:184KB
  • 参考文献:1. Barr A.G., Black T.A., Hogg E.H., Kljun N., Morgenstern K., and Nesic Z., 2004. Inter-annual variability in the leaf area index of a boreal aspen-hazelnut forest in relation to net ecosystem production. Agric. For. Meteorol. 126: 237-55. CrossRef
    2. Barton C. and Montagu K., 2006. Effect of spacing and water availability on root: shoot ratio in / Eucalyptus camaldulensis. For. Ecol. Manage. 221: 52-2.
    3. Bauhus J. and Messier C., 1999. Soil exploitation strategies of fine roots in different tree species of the southern boreal forest of eastern Canada. Can. J. For. Res. 29: 260-73.
    4. Benjamin J. and Nielsen D., 2006. Water deficit effects on root distribution of soybean, field pea and chickpea. Fields Crops Res. 97: 248-53. CrossRef
    5. Block R., Van Rees K., and Knight J., 2006. A review of fine root dynamics in / Populus plantations. Agrofor. Syst. 67: 73-4. CrossRef
    6. Claus A. and George E., 2005. Effect of stand age on fine-root biomass and biomass distribution in three European forest chronosequences. Can. J. For. Res. 35: 1617-625. CrossRef
    7. Gao Y., Giese M., Lin S., Sattelmacher B., Zhao Y., and Brueck H., 2008. Belowground net primary productivity and biomass allocation of a grassland in Inner Mongolia is affected by grazing intensity. Plant Soil 307: 41-0. CrossRef
    8. Gill R.A. and Jackson R.B., 2000. Global patterns of root turnover for terrestrial ecosystems. New Phytol. 147: 13-1. CrossRef
    9. Gower S., Vogel J., Norman J., Kucharik C., Steele S., and Stow T., 1997. Carbon distribution and aboveground net primary production in aspen, jack pine, and black spruce stands in Saskatchewan and Manitoba, Canada. J. Geophys. Res. 102: 29-1. CrossRef
    10. Hogg E.H. and Hurdle P.A., 1995. The aspen parkland in western Canada -a dry-climate analog for the future boreal forest. Water Air Soil Pollut. 82: 391-00. CrossRef
    11. Joslin J. and Wolfe M., 1998. Impacts of water input manipulations on fine root production and mortality in a mature hardwood forest. Plant Soil 204: 165-74. CrossRef
    12. Kalyn A.L. and Van Rees K.C.J., 2006. Contribution of fine roots to ecosystem biomass and net primary production in black spruce, aspen, and jack pine forests in Saskatchewan. Agric. For. Meteorol. 140: 236-43. CrossRef
    13. King J., Pregitzer K., and Zak D., 1999. Clonal variation in above- and below-ground growth responses of / Populus tremuloides Michaux: influence of soil warming and nutrient availability. Plant Soil 217: 119-30. CrossRef
    14. King J., Pregitzer K., Zak D., Sober J., Isebrands J., Dickson R., Hendrey G., and Karnosky D., 2001. Fine-root biomass and fluxes of soil carbon in young stands of paper birch and trembling aspen as affected by elevated atmospheric CO2 and tropospheric O3. Oecologia 128: 237-50. CrossRef
    15. Lambert M., Ung C., and Raulier F., 2005. Canadian national tree above-ground biomass equations. Can. J. For. Res. 35: 1996-018. CrossRef
    16. Landh?usser S., DesRochers A., and Lieffers V., 2001. A comparison of growth and physiology in / Picea glauca and / Populus tremuloides at different soil temperatures. Can. J. For. Res. 31: 1922-929.
    17. Liang Y., Hazlett D., and Lauenroth W., 1989. Biomass dynamics and water use efficiencies of five plant communities in the shortgrass steppe. Oecologia 80: 148-53.
    18. Meier I. and Leuschner C., 2008. Belowground drought response of European beech: fine root biomass and carbon partitioning in 14 mature stands across a precipitation gradient. Glob. Change Biol. 14: 2081-095. CrossRef
    19. Metcalfe D., Meir P., and Williams M., 2007. A comparison of methods for converting rhizotron root length measurements into estimates of root mass production per unit ground area. Plant Soil 301: 279-88. CrossRef
    20. Milchunas D.G., Morgan J.A., Mosier A.R., and LeCain D.R., 2005. Root dynamics and demography in shortgrass steppe under elevated CO2, and comments on minirhizotron methodology. Glob. Change Biol. 11: 1837-855. CrossRef
    21. Peltzer D. and Wilson S., 2001. Variation in plant responses to neighbors at local and regional scales. Am. Nat. 157: 610-25. CrossRef
    22. Pregitzer K., 2002. Fine roots of trees-a new perspective. New Phytol. 154: 267-70. CrossRef
    23. Pregitzer K., DeForest J., Burton A., Allen M., Ruess R., and Hendrick R., 2002. Fine root architecture of nine North American trees. Ecol. Monogr. 72: 293-09. CrossRef
    24. Pregitzer K.S., Zak D.R., Maziasz J., DeForest J., Curtis P.S., and Lussenhop J., 2000. Interactive effects of atmospheric CO2 and soil-N availability on fine roots of / Populus tremuloides. Ecol. Appl. 10: 18-3.
    25. Snyder K. and Williams D., 2007. Root allocation and water uptake patterns in riparian tree saplings: responses to irrigation and defoliation. For. Ecol. Manage. 246: 222-31. CrossRef
    26. Steele S.J., Gower S.T., Vogel J.G., and Norman J.M., 1997. Root mass, net primary production and turnover in aspen, jack pine and black spruce forests in Saskatchewan and Manitoba, Canada. Tree Phys. 17: 577-87.
    27. Steinaker D. and Wilson S., 2008. Phenology of fine roots and leaves in forest and grassland. J. Ecol. 96: 1222-229. CrossRef
    28. Steinaker D.F., 2006. Belowground and aboveground plant dynamics in a grassland-forest ecotone and experimental monocultures. MSc. Thesis, Department of Biology, University of Regina, Regina, Saskatchewan.
    29. Steinaker D.F. and Wilson S.D., 2005. Belowground litter contributions to nitrogen cycling at a northern grassland-forest boundary. Ecology 86: 2825-833. CrossRef
    30. Tateno R., Hishi T., and Takeda H., 2004. Above- and belowground biomass and net primary production in a cool-temperate deciduous forest in relation to topographical changes in soil nitrogen. For. Ecol. Manage. 193: 297-06. CrossRef
    31. Tilman D., 1988. Plant strategies and the dynamics and structure of plant communities. Princeton University Press.
    32. Tschaplinski T., Tuskan G., Gebre G., and Todd D., 1998. Drought resistance of two hybrid / Populus clones grown in a large-scale plantation. Tree Physiol. 18: 653-58.
    33. West J., Espeleta J., and Donovan L., 2004. Fine root production and turnover across a complex edaphic gradient of a / Pinus palustris-Aristida stricta savanna ecosystem. For. Ecol. Manage. 189: 397-06. CrossRef
    34. Wilson S.D. and Kleb H.R., 1996. The influence of prairie and forest vegetation on soil moisture and available nitrogen. Am. Midl. Nat. 136: 222-31. CrossRef
  • 作者单位:Bradley D. Pinno (1)
    Scott D. Wilson (1)
    Diego F. Steinaker (2)
    Ken C. J. Van Rees (3)
    Shawn A. McDonald (3)

    1. Department of Biology, University of Regina, S4S 0A2, Regina, Saskatchewan, Canada
    2. Instituto Nacional de Tecnologia Agropecuraria, Casilla de Correo 17, CP: 5730, Villa Mercedes (Pcia San Luis), Argentina
    3. Department of Soil Science, University of Saskatchewan, S7N 5A8, Saskatoon, Saskatchewan, Canada
文摘
-Fine root responses to potential climate change are relatively unknown in spite of their central role in ecosystem functioning. -We quantified fine root length, production, and turnover in boreal forest and aspen parkland of central Canada because the future climate of the boreal site is expected to be similar to the current climate of the parkland site. -Root depth distribution and turnover were similar between sites. Fine root mass was 4× greater at the parkland site and root length was 10× greater. Accordingly, the ecosystem level fine root: leaf mass ratio was 1.6 in the boreal site compared to 4.3 in the parkland site. On a per tree basis, however, fine root biomass was similar between sites due to the higher stem density of the parkland site. -The parkland site had a greater proportion of very fine roots (62% of the fine roots were < 0.1 mm in diameter) compared with the boreal site (82% of the fine roots were between 0.1-.5 mm in diameter). -These differences indicate a large-scale shift towards increased root allocation at the parkland site associated with decreasing water availability and earlier successional stage.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700