Finite-Rank Multivariate-Basis Expansions of the Resolvent Operator as a Means of Solving the Multivariable Lippmann–Schwinger Equation for Two-Particle Scattering
详细信息    查看全文
  • 作者:Zeki C. Kuruo?lu
  • 刊名:Few-Body Systems
  • 出版年:2014
  • 出版时间:November 2014
  • 年:2014
  • 卷:55
  • 期:11
  • 页码:1167-1183
  • 全文大小:247 KB
  • 参考文献:1. Elster Ch., Thomas J.H., Gl?ckle W.: Two-body T-matrices without angular-momentum decomposition: energy and momentum dependences. Few-Body Syst. 24, 55 (1998) CrossRef
    2. Shertzer J., Temkin A.: Direct calculation of the scattering amplitude without-partial wave analysis. Phys. Rev. A 63, 062714 (2001) CrossRef
    3. Caia G.L., Pascalutsa V., Wright L.E.: Solving potential scattering equations without partial wave decomposition. Phys. Rev. C 69, 034003 (2004) CrossRef
    4. Kessler B.M., Payne G.L., Polyzou W.N.: Application of wavelets to singular integral scattering equations. Phys. Rev. C 70, 034003 (2004) CrossRef
    5. Kadyrov A.S., Bray I., Stelbovics A.T., Saha B.: Direct solution of the three-dimensional Lippmann–Schwinger equation. J. Phys. B 38, 509 (2005) CrossRef
    6. Ramalho G., Arriaga A., Pe?a M.T.: Solution of the spectator equation for relativistic NN scattering without partial wave expansion. Few-Body Syst. 39, 123 (2006) CrossRef
    7. Rodríguez-Gallardo M., Deltuva A., Cravo E., Crespo R., Fonseca A.C.: Two-body scattering without angular-momentum decomposition. Phys. Rev. C 78, 034602 (2008) CrossRef
    8. Rodríguez-Gallardo M., Deltuva A., Cravo E., Crespo R., Fonseca A.C.: Two-body scattering without angular-momentum decomposition: fully off-shell T-matrices. Eur. Phys. J. A42, 601 (2009) CrossRef
    9. Kadyrov A.S., Abdurakhmanov I.B., Bray I., Stelbovics A.T.: Three-dimensional integral-equation approach to proton- and antiproton-hydrogen collisions. Phys. Rev. A 80, 022704 (2009) CrossRef
    10. Veerasamy S., Elster Ch., Polyzou W.N.: Two-nucleon scattering without partial waves using a momentum space Argonne V18 interaction. Few-Body Syst. 54, 2207 (2012) CrossRef
    11. Kuruo?lu Z.C.: Weighted-residual methods for the solution of two-particle Lippmann–Schwinger equation without partial-wave decomposition. Few-Body Syst. 55, 69 (2014) CrossRef
    12. Kuruo?lu, Z.C.: Multivariate Bateman method for two-body scattering without partial-wave decomposition. J. Math. Chem. (2014). doi:10.1007/s10910-014-0352-y
    13. Atkinson K.E.: A Survey of Numerical Methods for the Solution of Fredholm Integral Equations of the Second Kind. SIAM, Philadelphia (1976)
    14. Adhikari S.K.: Variational Principles and the Numerical Solution of Scattering Problems. Wiley, New York (1998) CrossRef
    15. L?wdin P.O.: Linear Algebra for Quantum Theory. Wiley, New York (1998)
    16. Cheney E.W.: Multivariate Approximation Theory: Selected Topics. SIAM, Philadelphia (1986) CrossRef
    17. Cheney W., Light W.: A Course in Approximation Theory. AMS, Providence (2009)
    18. Nurnberger G.: Approximation by Spline Functions. Springer, Berlin (1989) CrossRef
    19. Gordon W.J.: Blending-function methods of bivariate and multivariate interpolation and approximation. SIAM J. Numer. Anal. 8, 158 (1971) CrossRef
    20. Eyre D.: Solving three-body integral equations with blending functions. J. Comput. Phys. 73, 447 (1987) CrossRef
    21. Sloan I.H., Brady J.T.: Variational approach to the on- and off-shell T matrix. Phys. Rev. C 6, 701 (1972) CrossRef
    22. Kuruo?lu Z.C., Micha D.A.: Diatomic transition operators: results of / L 2 basis expansions. J. Chem. Phys. 72, 3328 (1980)
    23. Newton R.G.: Scattering Theory of Particles and Waves, 2nd edn. Springer, Berlin (1982) CrossRef
    24. Staszewska G., Truhlar D.G.: Convergence of / L 2 methods for scattering problems. J. Chem. Phys. 86, 2793 (1987) CrossRef
    25. Miller W.H., Jansen op de Haar B.M.D.D.: A new basis set method for quantum scattering calculations. J. Chem. Phys. 86, 6213 (1987) CrossRef
    26. Sun Y., Kouri D.J., Truhlar D.G.: A comparative analysis of variational methods for inelastic and reactive scattering. Nucl. Phys. A 508, 41c (1990) CrossRef
    27. Prenter P.M.: Splines and Variational Methods. Wiley, New York (1975)
    28. Fletcher C.A.J.: Computational Galerkin Methods. Springer, New York (1984) CrossRef
    29. Franke R.: Scattered data interpolation: tests of some methods. Math. Comput. 38, 181 (1982)
    30. Kansa E.J.: Multiquadrics- A scattered data approximation scheme with applications to computational fluid dynamics-I. Surface approximations and partial derivative estimates. Computers Math. Applic. 19, 127 (1990) CrossRef
    31. Wendland H.: Meshless Galerkin methods using radial basis functions. Math. Comput. 68, 1521 (1999) CrossRef
    32. Zhang Y.: Solving partial differential equations by meshless methods using radial basis functions. Appl. Math. Comput. 185, 614 (2007) CrossRef
    33. Hu X.G., Ho T.S., Rabitz H., Askar A.: Solution of the quantum fluid dynamical equations with radial basis function interpolation. Phys. Rev. E. 61, 5967 (2000) CrossRef
    34. Lovelace C.: Practical theory of three-particle states. I. Nonrelativistic. Phys. Rev. B 135, 1225 (1964) CrossRef
    35. Coester F.: Systematic approximations for the single-channel scattering amplitude. Phys. Rev. 133, B1516 (1964) CrossRef
    36. Scadron M., Weinberg S., Wright J.: Functional analysis and scattering theory. Phys. Rev. 135, B202 (1964) CrossRef
    37. Kuruoglu Z.C., Levin F.S.: Wave-packet propagation in momentum space: calculation of sharp-energy S-Matrix elements. Phys. Rev. A 46, 2304 (1992) CrossRef
    38. Fasshauser G.E.: Meshfree Approximation Methods with MATLAB. World Scientific, Singapore (2007) CrossRef
    39. Wendland H.: Scattered Data Approximation, vol. 17 of Cambridge Monographs on Computational Mathematics. Cambridge University Press, Cambridge (2005)
    40. Fasshauser G.E., Zhang J.G.: On choosing ‘optimal-shape parameters for RBF approximation. Numer. Algorithms 45, 345 (2007) CrossRef
    41. Schadow W., Elster Ch., Gl?ckle W.: Three-body scattering below breakup threshold: an approach without using partial waves. Few-Body Syst. 28, 15 (2000) CrossRef
    42. Liu H., Elster Ch., Gl?ckle W.: Three-body scattering at intermediate energies. Phys. Rev. C 72, 054003 (2005) CrossRef
    43. Elster Ch., Gl?ckle W., Wita?a H.: A new approach to the 3D Faddeev equation for three-body scattering. Few-Body Syst. 45, 1 (2009) CrossRef
    44. Schmid E.W., Ziegelmann H.: The Quantum Mechanical Three-Body Problem. Pergamon Press, Oxford (1974)
  • 作者单位:Zeki C. Kuruo?lu (1)

    1. Department of Chemistry, Bilkent University, 06800, Bilkent, Ankara, Turkey
  • ISSN:1432-5411
文摘
Finite-rank expansions of the two-body resolvent operator are explored as a tool for calculating the full three-dimensional two-body T-matrix without invoking the partial-wave decomposition. The separable expansions of the full resolvent that follow from finite-rank approximations of the free resolvent are employed in the Low equation to calculate the T-matrix elements. The finite-rank expansions of the free resolvent are generated via projections onto certain finite-dimensional approximation subspaces. Types of operator approximations considered include one-sided projections (right or left projections), tensor-product (or outer) projection and inner projection. Boolean combination of projections is explored as a means of going beyond tensor-product projection. Two types of multivariate basis functions are employed to construct the finite-dimensional approximation spaces and their projectors: (i) Tensor-product bases built from univariate local piecewise polynomials, and (ii) multivariate radial functions. Various combinations of approximation schemes and expansion bases are applied to the nucleon-nucleon scattering employing a model two-nucleon potential. The inner-projection approximation to the free resolvent is found to exhibit the best convergence with respect to the basis size. Our calculations indicate that radial function bases are very promising in the context of multivariable integral equations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700