Improvements in filtered Rayleigh scattering measurements using Fabry–Perot etalons for spectral filtering of pulsed, 532-nm Nd:YAG output
详细信息    查看全文
  • 作者:Jeffrey A. Sutton (1)
    Randy A. Patton (1)
  • 刊名:Applied Physics B: Lasers and Optics
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:116
  • 期:3
  • 页码:681-698
  • 全文大小:2,556 KB
  • 参考文献:1. R. Miles, W. Lempert, Two-dimensional measurement of density, velocity, and temperature in turbulent high-speed air flows by UV Rayleigh scattering. Appl. Phys. B 51, 1- (1990) CrossRef
    2. R.B. Miles, J.N. Forkey, W.R. Lempert, Filtered Rayleigh scattering measurements in supersonic/hypersonic facilities. AIAA Paper AIAA-92-3894, (1992)
    3. J.N. Forkey, Development and Demonstration of Filtered Rayleigh Scattering—A Laser Based Flow Diagnostic for Planar Measurements of Velocity, Temperature, and Pressure, Ph.D. Dissertation (Princeton University, Princeton, 1996)
    4. J.N. Forkey, N.D. Finkelstein, W.R. Lempert, R.B. Miles, Demonstration and characterization of filtered Rayleigh scattering for planar velocity measurements. AIAA J. 34(3), 442-48 (1996) CrossRef
    5. R.B. Miles, W.R. Lempert, Quantitative flow visualization in unseeded flows. Annu. Rev. Fluid Mech. 29, 285-26 (1997) CrossRef
    6. G.S. Elliott, M. Samimy, S.A. Arnette, A molecular filter based velocimetry technique for high speed flows. Exp. Fluids 18, 107 (1994)
    7. M. Boguszko, G.S. Elliott, On the use of filtered Rayleigh scattering for measurements in compressible flows and thermal fields. Exp. Fluids 38, 33-9 (2005) CrossRef
    8. G.S. Elliot, T.J. Beutner, Molecular filter based planar Doppler velocimetry. Prog. Aerosp. Sci. 35, 799-45 (1999) CrossRef
    9. G.S. Elliott, N. Glumac, C.D. Carter, Two-dimensional temperature field measurements using a molecular based technique. Combust. Sci. Technol. 125, 351 (1997) CrossRef
    10. G.S. Elliott, N. Glumac, C.D. Carter, Molecular filtered Rayleigh scattering applied to combustion. Meas. Sci. Technol. 12(4), 452-66 (2001) CrossRef
    11. D. Hofmann, A. Leipertz, Temperature field measurements in a sooting flame by filtered Rayleigh scattering (FRS). Proc. Combust. Inst. 26, 945-50 (1996) CrossRef
    12. S.P. Kearney, S.J. Beresh, R.W. Schefer, T.W. Grasser, Filtered Rayleigh scattering diagnostic for multi-parameter thermal-fluids measurements: LDRD final report. Sandia Report, SAND2004-0158, 2004
    13. D. Most, A. Leipertz, Simultaneous two-dimensional flow velocity and gas temperature measurements by use of a combined particle image velocimetry and filtered Rayleigh scattering technique. Appl. Opt. 40(30), 5379-387 (2001) CrossRef
    14. D. Most, F. Dinkelacker, A. Leipertz, Direct determination of the turbulent flux by simultaneous application of filtered Rayleigh scattering thermometry and particle imaging velocimetry. Proc. Combust. Inst. 29, 2669 (2002) CrossRef
    15. R.G. Seasholtz, A.E. Buggele, Improvement in suppression of pulsed Nd:YAG laser light with iodine absorption cells for filtered Rayleigh scattering measurements. NASA Technical Memorandum 113177, 1997
    16. J.N. Forkey, W.R. Lempert, R.B. Miles, Observation of a 100-MHz frequency variation across the output of a frequency-doubled injection-seeded unstable-resonator / Q-switched Nd:YAG laser. Opt. Lett. 22(4), 230-32 (1997) CrossRef
    17. J.N. Forkey, W.R. Lempert, R.B. Miles, Corrected and calibrated I2 absorption model at frequency-doubled Nd:YAG laser wavelengths. Appl. Opt. 36(27), 6729-738 (1997) CrossRef
    18. S.P. Kearney, R.W. Schefer, S.J. Beresh, T.W. Grasser, Temperature imaging in nonpremixed flames by joint filtered Rayleigh and Raman scattering. Appl. Opt. 44(9), 1548-558 (2005) CrossRef
    19. R.A. Patton, J.A. Sutton, Seed laser power effects on the spectral purity of Q-switched Nd:YAG lasers and the implications for filtered Rayleigh scattering measurements. Appl. Phys. B. 111(3), 457-68 (2013) CrossRef
    20. A.P. Yalin, R.B. Miles, Ultraviolet filtered Rayleigh scattering temperature measurements with a mercury filter. Opt. Lett. 24(9), 590-92 (1999) CrossRef
    21. A.P. Yalin, R.B. Miles, Temperature measurements by ultraviolet filtered Rayleigh scattering using a mercury filter. J. Thermophys. Heat Transf. 14(2), 210-15 (2000) CrossRef
    22. A.P. Yalin, Y.Z. Ionikh, R.B. Miles, Gas temperature measurements in weakly ionized glow discharges with filtered Rayleigh scattering. Appl. Opt. 41(18), 2753-762 (2001)
    23. J. Zetterberg, S. Li, M. Afzelius, M. Alden, Two-dimensional temperature measurements in flames using filtered Rayleigh scattering at 254?nm. Appl. Spectrosc. 62(7), 778-83 (2008) CrossRef
    24. R.L. McKenzie, Measurement capabilities of planar doppler velocimetry using pulsed lasers. Appl. Opt. 35(6), 948-64 (1996) CrossRef
    25. W. Koechner, / Solid-State Laser Engineering, 6th edn. (Springer, Berlin, 2006)
    26. N.P. Barnes, J.C. Barnes, Injection seeding I: theory. IEEE J. Quantum Electron. 29(10), 2670-683 (1993) CrossRef
    27. W. Lee, W.R. Lempert, Enhancement of spectral purity of injection-seeded titanium:sapphire laser by cavity locking and stimulated Brillouin scattering. Appl. Opt. 42(21), 4320-326 (2003) CrossRef
    28. E. Hecht, / Optics, 2nd edn. (Addison-Wesley, Canada, 1987)
    29. M. Born, E. Wolf, / Principles of Optics, 6th edn. (Pergamon, Elmsford, 1980)
    30. S.G. Lipson, H. Lipson, D.S. Tannhauser, / Optical Physics, 3rd edn. (Cambridge University Press, London, 1995) CrossRef
    31. M. Abramowitz, I.A. Stegun, (eds.) “Airy Functions.-Sec. 10.4 in “Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables- 9th printing. New York: Dover, pp. 446-52, 1972
    32. K.P. Birch, M.J. Downs, Correction to the updated Edlén equation for the refractive index of air. Metrologia 31, 315-16 (1994) CrossRef
    33. I.H. Malitson, Interspecimen comparison of the refractive index of fused silica. J. Opt. Soc. Am. 55(10), 1205-209 (1965)
    34. A.G. Schott, Zerodur properties, www.us.schott.com. Retrieved 1 July 2013
    35. Fused silica properties, www.us.schott.com. Retrieved 1 July 2013
    36. N.T. Clemens, / “Flow Imaging- in Encyclopedia of Imaging Science and Technology (Wiley, New York, 2002)
    37. G. Tenti, C.D. Boley, R.C. Desai, Kinetic-model description of Rayleigh–Brillouin scattering from molecular gases. Can. J. Phys. 52(4), 285-90 (1974)
    38. K.M. Tacina, W.J.A. Dahm, Effects of heat release on turbulent shear flows. Part 1. A general equivalence principle for non-buoyant flows and its application to turbulent jet flames. J. Fluid Mech. 415, 23-4 (2000) CrossRef
  • 作者单位:Jeffrey A. Sutton (1)
    Randy A. Patton (1)

    1. Department of Mechanical and Aerospace Engineering, Ohio State University, Columbus, OH, USA
  • ISSN:1432-0649
文摘
In this manuscript, we investigate a new methodology for increasing the spectral purity of the second-harmonic output of an injection-seeded, frequency-doubled, Q-switched Nd:YAG laser operating near 532?nm. Specifically, tunable Fabry–Perot etalons (FPEs) are used as ultra-narrowband spectral filters, transmitting the desired single-mode output, while filtering out a significant portion of the broadband pedestal characteristic of injection-seeded lasers. A specific emphasis is placed on the design and optimization of the FPEs in the context of filtered Rayleigh scattering (FRS) measurements and how their utilization results in substantial increases in spectral purity, realizable attenuation of unwanted scattering, and applications in environments with high particulate levels. Experimental results show an increase in laser spectral purity of more than one order-of-magnitude (from 0.99997 to 0.999998) when using FPE filters, which led to a two-order-of-magnitude increase in achievable attenuation of laser light passing through a molecular iodine filter. The utility of the FPE-based spectral filtering of the pulsed Nd:YAG output for 2D FRS imaging was demonstrated in turbulent, isothermal gas-phase jets, seeded with varying levels of non-evaporating droplets with particle volume fractions (F Vp) ranging from ~5 to >60 parts-per-million (ppm). After implementation of an optimized air-spaced FPE in the 532-nm output, no particle scattering was observed (based on visual and statistical analysis), even for the highest seed case (F Vp?~?60?ppm), and the gas-phase Rayleigh–Brillouin signals were collected without interference from the flowfield particulate. The current results suggest that the implementation of properly specified FPEs allows FRS to be applied in environments with high flowfield particulate levels; levels are well beyond what have been suitable for previous FRS measurements.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700