Nature and source of suspended particulate matter and detritus along an austral temperate river–estuary continuum, assessed using stable isotope analysis
详细信息    查看全文
  • 作者:Tatenda Dalu ; Nicole B. Richoux ; P. William Froneman
  • 关键词:Allochthonous ; Autochthonous ; Benthic algae ; Carbon ; Kowie ; Nitrogen ; SIAR ; Stable isotope ratios ; Anthropogenic
  • 刊名:Hydrobiologia
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:767
  • 期:1
  • 页码:95-110
  • 全文大小:863 KB
  • 参考文献:Abrantes, K. & M. Sheaves, 2008. Incorporation of terrestrial wetland material into aquatic food webs in a tropical estuarine wetland. Estuarine, Coastal and Shelf Science 80: 401–412.CrossRef
    Anderson, M. J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 32–46.
    Anderson, C. & G. Cabana, 2005. δ15N in riverine food webs: effects of N inputs from agricultural watersheds. Canadian Journal of Fisheries and Aquatic Sciences 62: 333–340.CrossRef
    Anderson, C. & G. Cabana, 2006. Does δ15N in river food webs reflect the intensity and origin of N loads from the watershed? Science of the Total Environment 367: 968–978.CrossRef PubMed
    Anderson, M. J. & C. J. F. ter Braak, 2003. Permutation tests for multi-factorial analysis of variance. Journal of Statistical, Computation and Simulation 73: 85–113.CrossRef
    Anderson, M. J., R. N. Gorley & K. R. Clarke, 2008. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. PRIMER-E, Plymouth.
    Andrews, J. E., A. M. Greenaway & P. F. Dennis, 1998. Combined carbon isotope and C/N ratios as indicators of source and fate of organic matter in a poorly flushed, tropical estuary: Hunts Bay, Kingston Harbour, Jamaica. Estuarine, Coastal and Shelf Science 46: 743–756.CrossRef
    Antonio, E. S. & N. B. Richoux, 2014. Trophodynamics of three decapod crustaceans in a temperate estuary using stable isotope and fatty acid analyses. Marine Ecology Progress Series 504: 193–205.CrossRef
    Antonio, E. S., A. Kasai, M. Ueno, N. Wond & Y. Ishihi, 2010. Spatial variation in organic matter utilization by benthic communities from Yura River-Estuary to offshore of Tango Sea, Japan. Estuarine, Coastal and Shelf Science 86: 107–117.CrossRef
    Antonio, E. S., A. Kasai, M. Ueno, Y. Ishihi, H. Yokoyama & Y. Yamashita, 2012. Spatial-temporal feeding dynamics of benthic communities in an estuary–marine gradient. Estuarine, Coastal and Shelf Science 112: 86–97.CrossRef
    Bade, D. L., M. L. Pace, J. J. Cole & S. R. Carpenter, 2006. Can algal photosynthetic inorganic carbon isotope fractionation be predicted in lakes using existing models? Aquatic Science 68: 142–153.CrossRef
    Barros, G. V., L. A. Martinelli, T. M. O. Novais, J. P. H. B. Ometto & G. M. Zuppi, 2010. Stable isotopes of bulk organic matter to trace carbon and nitrogen dynamics in an estuarine ecosystem in Babitonga Bay (Santa Catarina, Brazil). Science of the Total Environment 408: 2226–2232.CrossRef PubMed
    Bergamino, L., T. Dalu & N. B. Richoux, 2014. Spatial and temporal patterns in sediment organic matter composition within an estuarine environment: stable isotope and fatty acid signatures. Hydrobiologia 732: 133–145.CrossRef
    Berto, D., F. Rampazzo, S. Noventa, F. Cacciatore, M. Gabellini, F. Bernardi Aubry, A. Girolimetto & R. Boscolo Brusà, 2013. Stable carbon and nitrogen isotope ratios as tools to evaluate the nature of particulate organic matter in the Venice lagoon. Estuarine, Coastal and Shelf Science 135: 66–76.CrossRef
    Bouillon, S., P. C. Mohan, N. Sreenivas & F. Dehairs, 2000. Sources of suspended organic matter and selective feeding by zooplankton in an estuarine mangrove ecosystem as traced by stable isotopes. Marine Ecology Progress Series 208: 79–92.CrossRef
    Bouillon, S., T. Moens, I. Overmeer, N. Koedam & F. Dehairs, 2004. Resource utilization patterns of epifauna from mangrove forests with contrasting inputs of local versus imported organic matter. Marine Ecology Progress Series 278: 77–88.CrossRef
    Cai, D. L., F. C. Tan & J. M. Edmond, 1988. Sources and transport of particulate organic carbon in the Amazon River and Estuary. Estuarine, Coastal and Shelf Science 26: 1–14.CrossRef
    Carpenter, S. R., J. J. Cole, M. L. Pace, M. Van De Bogert, D. L. Bade, D. Bastviken, C. M. Gille, J. R. Hodgson, J. F. Kitchell & E. S. Kritzberg, 2005. Ecosystem subsidies: terrestrial support of aquatic food webs from 13C addition to contrasting lakes. Ecology 86: 2737–2750.CrossRef
    Couch, C. A., 1989. Carbon and nitrogen stable isotopes of meiobenthos and their food resources. Estuarine, Coastal and Shelf Science 28: 433–441.CrossRef
    Dalu, T., P. W. Froneman, L. D. Chari & N. B. Richoux, 2014a. Colonisation and community structure of benthic diatoms on artificial substrates following a major flood event: a case of the Kowie River (Eastern Cape, South Africa). Water SA 40: 471–480.CrossRef
    Dalu, T., P. W. Froneman & N. B. Richoux, 2014b. Phytoplankton community diversity along a river–estuary continuum. Transactions of the Royal Society of South Africa 69: 107–116.CrossRef
    Dalu, T., N. B. Richoux & P. W. Froneman, 2014c. An assessment, using multivariate analysis and stable isotopes, of the effects of substrate type on phytobenthos communities. Inland Waters 4: 397–412.CrossRef
    Dalu, T., T. Bere, N. B. Richoux & P. W. Froneman, 2015a. Assessment of the spatial and temporal variation in periphyton communities along a small temperate river system: a multimetric and stable isotope analysis approach. South African Journal of Botany 100: 203–212.CrossRef
    Dalu, T., N. B. Richoux & P. W. Froneman, 2015b. Distribution of benthic diatom communities in a permanently open temperate estuary, in relation to physico-chemical variables. South Africa Journal of Botany. doi:10.​1016/​j.​sajb.​2015.​06.​002 .
    Dehairs, F., G. G. Rao, P. Chandra Mohan, A. V. Raman, S. Marguillier & L. Hellings, 2000. Tracing mangrove carbon in suspended matter and aquatic fauna of the Gautami–Godavari Delta, Bay of Bengal (India). Hydrobiologia 431: 225–241.CrossRef
    Diebel, M. W. & M. J. Vander Zanden, 2009. Nitrogen stable isotopes in streams: effects of agricultural sources and transformations. Ecological Applications 19: 1127–1134.CrossRef PubMed
    Finlay, J. C. & C. Kendall, 2007. Stable Isotope Tracing of Temporal and Spatial Variability in Organic Matter Sources to Freshwater Ecosystems. In Michener, R. & K. Lajtha (eds), Stable Isotopes in Ecology and Environmental Science, 2nd ed. Blackwell Publishing, Oxford: 283–333.CrossRef
    Finlay, J. C., M. E. Power & G. Cabana, 1999. Effects of water velocity on algal carbon isotope ratios: implications for river food web studies. Limnology and Oceanography 44: 1198–1203.CrossRef
    Fu, Y., C. Tang, J. Li, Y. Zhao, W. Zhong & X. Zeng, 2014. Sources and transport of organic carbon from the Dongjiang River to the Humen outlet of the Pearl River, southern China. Journal of Geographical Science 24: 143–158.CrossRef
    Graham, M. C., M. A. Eaves, J. G. Farmer, J. Dobson & A. E. Fallick, 2001. A study of carbon and nitrogen stable isotope and elemental ratios as potential indicators of source and fate of organic matter in sediments of the Forth Estuary, Scotland. Estuarine, Coastal and Shelf Science 52: 375–380.CrossRef
    Guerra, R., R. Pistocchi & S. Vanucci, 2013. Dynamics and sources of organic carbon in suspended particulate matter and sediments in Pialassa Baiona lagoon (NW Adriatic Sea, Italy). Estuarine, Coastal and Shelf Science 135: 24–32.CrossRef
    Hall, R. O., G. E. Likens & H. M. Malcolm, 2001. Trophic basis of invertebrate production in 2 streams at the Hubbard Brook Experimental Forest. Journal of the North American Benthological Society 20: 432–447.CrossRef
    Heydorn, A. E. F. & J. R. Grindley, 1982. Estuaries of the Cape. Part II: Synopses of available information on individual systems. Report No.10 Kowie (CSE 10). CSIR Research Report 409. Council for Scientific and Industrial Research (CSIR), Pretoria
    Ishikawa, N. F., H. Doi & J. C. Finlay, 2012. Global meta-analysis for controlling factors on carbon stable isotope ratios of lotic periphyton. Oecologia 170: 541–549.CrossRef PubMed
    Jha, P. K. & M. Masao, 2013. Factors affecting nutrient concentration and stable carbon and nitrogen isotope ratio of particulate organic matter in the Ishikari River system, Japan. Water Air and Soil Pollution 224: 1551–1565.CrossRef
    Keller, K. & F. M. M. Morel, 1999. A model of carbon isotopic fractionation and active carbon uptake in phytoplankton. Marine Ecology Progress Series 182: 295–298.CrossRef
    Keough, J. R., C. A. Hagley, E. M. Ruzycki & M. Sierszen, 1998. δ13C composition of primary producers and role of detritus in a freshwater coastal ecosystem. Limnology and Oceanography 43: 734–740.CrossRef
    Lau, D. C. P., K. M. Y. Leung & D. Dudgeon, 2009. Are autochthonous foods more important than allochthonous resources to benthic consumers in tropical headwater streams? Journal of the North American Benthological Society 28: 426–439.CrossRef
    Lu, Y. H., J. E. Bauer, E. A. Canuel, R. M. Chambers, Y. Yamashita, R. Jaffé & A. Barrett, 2014a. Effects of land use on sources and ages of inorganic and organic carbon in temperate headwater streams. Biogeochemistry 119: 275–292.CrossRef
    Lu, Y. H., E. A. Canuel, J. E. Bauer & R. M. Chambers, 2014b. Effects of watershed land use on sources and nutritional value of particulate organic matter in temperate headwater streams. Aquatic Science 76: 419–436.CrossRef
    Marty, J. & D. Planas, 2008. Comparison of methods to determine algal δ13C in freshwater. Limnology and Oceanography: Methods 6: 51–63.CrossRef
    McArdle, B. H. & M. J. Anderson, 2001. Fitting multivariate models to community data: a comment on distance based redundancy analysis. Ecology 82: 290–297.CrossRef
    Parnell, A. C., R. Inger, S. Bearhop & A. L. Jackson, 2010. Source partitioning using stable isotopes: coping with too much variation. PLOS One 5: e9672.PubMedCentral CrossRef PubMed
    Pingram, M. A., K. J. Collier, D. P. Hamilton, B. J. Hicks & B. O. David, 2014. Spatial and temporal patterns of carbon flow in a temperate, large river food web. Hydrobiologia 729: 107–131.CrossRef
    Richoux, N. B. & P. W. Froneman, 2007. Assessment of spatial variation in carbon utilization by benthic and pelagic invertebrates in a temperate South African estuary using stable isotope signatures. Estuarine, Coastal and Shelf Science 71: 545–558.CrossRef
    Sarma, V. V. S. S., J. Arya, Ch V Subbaiah, S. A. Naidu, L. Gawade, P. Praveen Kumar & N. P. C. Reddy, 2012. Stable isotopes of carbon and nitrogen in suspended matter and sediments from the Godavari estuary. Journal of Oceanography 68: 307–319.CrossRef
    Schweizer, M., J. Fear & G. Cadisch, 1999. Isotopic (13C) fractionation during plant residue decomposition and its implications for soil organic matter studies. Rapid Communication in Mass Spectrometry 13: 1284–1290.CrossRef
    Statzner, B. & B. Higler, 1985. Questions and comments on the River Continuum Concept. Canadian Journal of Fisheries and Aquatic Sciences 42: 1038–1044.CrossRef
    Tan, F. C., 1987. Discharge and Carbon Isotope Composition of Particulate Organic Carbon from the St Lawrence River, Canada. In Degens, E. T., S. Kempe & G. Weibin (eds), Transport of Carbon and Minerals in Major World Rivers. Mitt. Geol-Paläont. Institute, University of Hamburg, SCOPE/UNEP Sonderbd. 64: 301–310.
    Thorp, J. H. & M. D. Delong, 1994. The riverine productivity model: an heuristic view of carbon sources and organic processing in large river ecosystems. Oikos 70: 305–308.CrossRef
    Thornton, S. F. & J. McManus, 1994. Application of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems: evidence from the Tay Estuary, Scotland. Estuarine, Coastal and Shelf Science 38: 219–233.CrossRef
    Usui, T., S. Nagao, M. Yamamoto, K. Suzuki, I. Kudo, S. Montani, A. Noda & M. Minagawa, 2006. Distribution and sources of organic matter in surficial sediments on the shelf and slope off Tokachi, western North Pacific, inferred from C and N stable isotopes and C/N ratios. Marine Chemistry 98: 241–259.CrossRef
    Vander Zanden, M. J., Y. Vadeboncoeur, M. W. Diebel & E. Jeppesen, 2005. Primary consumer stable nitrogen isotopes as indicators of nutrient source. Environmental Science and Technology 39: 7509–7515.CrossRef PubMed
    Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Science 37: 130–137.CrossRef
    Whitfield, A. K., A. W. Paterson, A. H. Bok & H. M. Kok, 1994. A comparison of the ichthyofaunas in two permanently open Eastern Cape estuaries. South African Journal of Zoology 29: 175–185.CrossRef
    Winterbourn, M. J., B. Cowie & J. S. Rounick, 1984. Food resources and ingestion patterns of insects along a West Coast, South Island, river system. New Zealand Journal of Marine and Freshwater Research 18: 43–51.CrossRef
    Yoshii, K., N. G. Melnik, O. A. Timoshkin, N. A. Bondarenko, P. N. Anoshko, T. Yoshioka & E. Wada, 1999. Stable isotope analyses of the pelagic food web in Lake Baikal. Limnology and Oceanography 44: 502–511.CrossRef
  • 作者单位:Tatenda Dalu (1)
    Nicole B. Richoux (1)
    P. William Froneman (1)

    1. Department of Zoology and Entomology, Rhodes University, P O Box 94, Grahamstown, 6140, South Africa
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Hydrobiology
    Ecology
  • 出版者:Springer Netherlands
  • ISSN:1573-5117
文摘
Ecologists are interested in the factors that control, and the variability in, the contributions of different sources to mixed organic materials travelling through lotic systems. We hypothesized that the source matter fuelling mixed organic pools in a river–estuary continuum varies over space and time. Samples of the mixed organic pools were collected along a small temperate river (Kowie River) in southern Africa during early and late spring, summer and winter. The C:N ratios of suspended particulate matter (SPM) collected during summer and winter indicated that the lower reaches of the system had similar organic matter contributions. Stable isotope analysis in R revealed that aquatic macrophytes were significant contributors to SPM in the upper reaches. Bulk detritus had large allochthonous matter components in the lower reaches, and contributions of aquatic macrophytes and benthic algae were high (>50%) in the upper to middle reaches. The evaluation of organic matter contributions to SPM and detritus along the river–estuary continuum provided a baseline assessment of the nature and sources of potential food for consumers inhabiting different locations during different seasons. Incorporating SPM and detritus spatio-temporal variations in food web studies will improve our understanding of carbon flow in aquatic systems. Keywords Allochthonous Autochthonous Benthic algae Carbon Kowie Nitrogen SIAR Stable isotope ratios Anthropogenic

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700