PPP-Codes for Large-Scale Similarity Searching
详细信息    查看全文
  • 刊名:Lecture Notes in Computer Science
  • 出版年:2016
  • 出版时间:2016
  • 年:2016
  • 卷:9510
  • 期:1
  • 页码:61-87
  • 全文大小:1,042 KB
  • 参考文献:1.Amato, G., Gennaro, C., Savino, P.: MI-File: using inverted files for scalable approximate similarity search. Multimedia Tools Appl. 71(3), 1–30 (2012)
    2.Amato, G., Savino, P.: Approximate similarity search in metric spaces using inverted files. In: Proceedings of InfoScale 2008. Vico Equense, Italy, June 4–6, pp. 1–10. ICST, Brussels, Belgium (2008)
    3.Batko, M., Falchi, F., Lucchese, C., Novak, D., Perego, R., Rabitti, F., Sedmidubsky, J., Zezula, P.: Building a web-scale image similarity search system. Multimedia Tools Appl. 47(3), 599–629 (2010)CrossRef
    4.Batko, M., Novak, D., Zezula, P.: MESSIF: metric similarity search implementation framework. In: Thanos, C., Borri, F., Candela, L. (eds.) Digital Libraries: Research and Development. LNCS, vol. 4877, pp. 1–10. Springer, Heidelberg (2007)CrossRef
    5.Beecks, C., Lokoč, J., Seidl, T., Skopal, T.: Indexing the signature quadratic form distance for efficient content-based multimedia retrieval. In: Proceedings of the ACM International Conference on Multimedia Retrieval, p. 8 (2011)
    6.Bolettieri, P., Esuli, A., Falchi, F., Lucchese, C., Perego, R., Piccioli, T., Rabitti, F.: CoPhIR: A Test Collection for Content-Based Image Retrieval. CoRR, abs/0905.4 (2009)
    7.Chávez, E., Figueroa, K., Navarro, G.: Effective proximity retrieval by ordering permutations. IEEE Trans. Patt. Anal. Mach. Intell. 30(9), 1647–1658 (2008)CrossRef
    8.Christensen, D.: Fast algorithms for the calculation of Kendalls \(\tau \) . Comput. Stat. 20(1), 51–62 (2005)MATH CrossRef
    9.Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.: DeCAF: a deep convolutional activation feature for generic visual recognition. In: International Conference on Machine Learning, pp. 647–655 (2014)
    10.Edsberg, O., Hetland, M.L.: Indexing inexact proximity search with distance regression in pivot space. In: Proceedings of SISAP 2010, Istanbul, Turkey, September 18–19, pp. 51–58. ACM Press, NY, USA (2010)
    11.Esuli, A.: Use of permutation prefixes for efficient and scalable approximate similarity search. Inform. Process. Manag. 48(5), 889–902 (2012)CrossRef
    12.Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2003, pp. 28–36. Society for Industrial and Appl. Math, Philadelphia, PA, USA (2003)
    13.Fagin, R., Kumar, R., Sivakumar, D.: Efficient similarity search and classification via rank aggregation. In: Proceedings of ACM SIGMOD 2003. San Diego, California June 9–12, pp. 301–312. ACM Press, New York, USA (2003)
    14.Gan, J., Feng, J., Fang, Q., Ng, W.: Locality-sensitive hashing scheme based on dynamic collision counting. In: Proceedings of the 2012 International Conference on Management of Data - SIGMOD 2012, pp. 541–552. ACM Press, New York, NY, USA (2012)
    15.Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hashing. In: Proceedings of VLDB 1999, Edinburgh, Scotland, UK, September 7–10, pp. 518–529. Morgan Kaufmann (1999)
    16.Jégou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor search. IEEE Trans. Patt. Anal. Mach. Intell. 33(1), 117–128 (2011)CrossRef
    17.Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances In Neural Information Processing Systems, pp. 1106–1114 (2012)
    18.Muller-Molina, A.J., Shinohara, T.: Efficient similarity search by reducing I/O with compressed sketches. In: 2009 Second International Workshop on Similarity Search and Applications, pp. 30–38. IEEE, August 2009
    19.Novak, D.: Multi-modal similarity retrieval with a shared distributed data store. In: Jung, J.J., Badica, C., Kiss, A. (eds.) INFOSCALE 2014. LNICST, vol. 139, pp. 28–37. Springer, Heidelberg (2015)
    20.Novak, D., Batko, M., Zezula, P.: Metric Index: an efficient and scalable solution for precise and approximate similarity search. Inform. Syst. 36(4), 721–733 (2011)CrossRef
    21.Novak, D., Batko, M., Zezula, P.: Large-scale Image retrieval using neural net descriptors. In: Proceedings of SIGIR 2015 (2015) (Will appear)
    22.Novak, D., Kyselak, M., Zezula, P.: On locality-sensitive indexing in generic metric spaces. In: Proceedings of SISAP 2010, Istanbul, Turkey, September 18–19, pp. 59–66. ACM Press, New York, USA (2010)
    23.Novak, D., Zezula, P.: Performance study of independent anchor spaces for similarity searching. Comput. J. 57(11), 1741–1755 (2014)CrossRef
    24.Novak, D., Zezula, P.: Rank aggregation of candidate sets for efficient similarity search. In: Decker, H., Lhotská, L., Link, S., Spies, M., Wagner, R.R. (eds.) DEXA 2014, Part II. LNCS, vol. 8645, pp. 42–58. Springer, Heidelberg (2014)
    25.Patella, M., Ciaccia, P.: Approximate similarity search: a multi-faceted problem. J. Discrete Algorithms 7(1), 36–48 (2009)MATH MathSciNet CrossRef
    26.Skala, M.: Counting distance permutations. J. Discrete Algorithms 7(1), 49–61 (2009)MATH MathSciNet CrossRef
    27.Torralba, A., Fergus, R., Weiss, Y.: Small codes and large image databases for recognition. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE, June 2008
    28.Weiss, Y., Fergus, R., Torralba, A.: Multidimensional spectral hashing. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part V. LNCS, vol. 7576, pp. 340–353. Springer, Heidelberg (2012)CrossRef
    29.Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space Approach. Advances in Database Systems, vol. 32. Springer, New York (2006)
  • 作者单位:David Novak (19)
    Pavel Zezula (19)

    19. Masaryk University, Brno, Czech Republic
  • 丛书名:Transactions on Large-Scale Data- and Knowledge-Centered Systems XXIV
  • ISBN:978-3-662-49214-7
  • 刊物类别:Computer Science
  • 刊物主题:Artificial Intelligence and Robotics
    Computer Communication Networks
    Software Engineering
    Data Encryption
    Database Management
    Computation by Abstract Devices
    Algorithm Analysis and Problem Complexity
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1611-3349
文摘
Many current applications need to organize data with respect to mutual similarity between data objects. A typical general strategy to retrieve objects similar to a given sample is to access and then refine a candidate set of objects. We propose an indexing and search technique that can significantly reduce the candidate set size by combination of several space partitionings. Specifically, we propose a mapping of objects from a generic metric space onto main memory codes using several pivot spaces; our search algorithm first ranks objects within each pivot space and then aggregates these rankings producing a candidate set reduced by two orders of magnitude while keeping the same answer quality. Our approach is designed to well exploit contemporary HW: (1) larger main memories allow us to use rich and fast index, (2) multi-core CPUs well suit our parallel search algorithm, and (3) SSD disks without mechanical seeks enable efficient selective retrieval of candidate objects. The gain of the significant candidate set reduction is paid by the overhead of the candidate ranking algorithm and thus our approach is more advantageous for datasets with expensive candidate set refinement, i.e. large data objects or expensive similarity function. On real-life datasets, the search time speedup achieved by our approach is by factor of two to five.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700