MELAS syndrome and cardiomyopathy: linking mitochondrial function to heart failure pathogenesis
详细信息    查看全文
  • 作者:Ying-Han R. Hsu ; Haran Yogasundaram ; Nirmal Parajuli…
  • 关键词:Cardiomyopathy ; Mitochondria ; MELAS syndrome ; HF
  • 刊名:Heart Failure Reviews
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:21
  • 期:1
  • 页码:103-116
  • 全文大小:2,339 KB
  • 参考文献:1.Mori J, Zhang L, Oudit GY, Lopaschuk GD (2013) Impact of the renin-angiotensin system on cardiac energy metabolism in heart failure. J Mol Cell Cardiol 63:98–106PubMed CrossRef
    2.Neubauer S (2007) The failing heart—an engine out of fuel. N Engl J Med 356:1140–1151PubMed CrossRef
    3.Bates MG, Bourke JP, Giordano C, d’Amati G, Turnbull DM, Taylor RW (2012) Cardiac involvement in mitochondrial DNA disease: clinical spectrum, diagnosis, and management. Eur Heart J 33:3023–3033PubMed PubMedCentral CrossRef
    4.Williams RS (1995) Cardiac involvement in mitochondrial diseases, and vice versa. Circulation 91:1266–1268PubMed CrossRef
    5.Finsterer J, Kothari S (2014) Cardiac manifestations of primary mitochondrial disorders. Int J Cardiol 177:754–763PubMed CrossRef
    6.Wahbi K, Bougouin W, Behin A, Stojkovic T, Becane HM, Jardel C et al (2015) Long-term cardiac prognosis and risk stratification in 260 adults presenting with mitochondrial diseases. Eur Heart J 36:2886–2893PubMed CrossRef
    7.Koopman WJ, Willems PH, Smeitink JA (2012) Monogenic mitochondrial disorders. N Engl J Med 366:1132–1141PubMed CrossRef
    8.Elliott HR, Samuels DC, Eden JA, Relton CL, Chinnery PF (2008) Pathogenic mitochondrial DNA mutations are common in the general population. Am J Hum Genet 83:254–260PubMed PubMedCentral CrossRef
    9.Gallagher D, Belmonte D, Deurenberg P, Wang Z, Krasnow N, Pi-Sunyer FX et al (1998) Organ-tissue mass measurement allows modeling of REE and metabolically active tissue mass. Am J Physiol 275:E249–E258PubMed
    10.Herrmann G, Decherd GM (1939) The chemical nature of heart failure. Ann Intern Med 12:1233–1244CrossRef
    11.Marin-Garcia J, Goldenthal MJ (2008) Mitochondrial centrality in heart failure. Heart Fail Rev 13:137–150PubMed CrossRef
    12.Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J et al (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465PubMed CrossRef
    13.Meyers DE, Basha HI, Koenig MK (2013) Mitochondrial cardiomyopathy: pathophysiology, diagnosis, and management. Tex Heart Inst J 40:385–394PubMed PubMedCentral
    14.Huss JM, Kelly DP (2005) Mitochondrial energy metabolism in heart failure: a question of balance. J Clin Investig 115:547–555PubMed PubMedCentral CrossRef
    15.Ahuja P, Wanagat J, Wang Z, Wang Y, Liem DA, Ping P et al (2013) Divergent mitochondrial biogenesis responses in human cardiomyopathy. Circulation 127:1957–1967PubMed PubMedCentral CrossRef
    16.Attardi G, Schatz G (1988) Biogenesis of mitochondria. Annu Rev Cell Biol 4:289–333PubMed CrossRef
    17.Uldry M, Yang W, St-Pierre J, Lin J, Seale P, Spiegelman BM (2006) Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation. Cell Metab 3:333–341PubMed CrossRef
    18.Ahuja P, Zhao P, Angelis E, Ruan H, Korge P, Olson A et al (2010) Myc controls transcriptional regulation of cardiac metabolism and mitochondrial biogenesis in response to pathological stress in mice. J Clin Investig 120:1494–1505PubMed PubMedCentral CrossRef
    19.Arany Z, Novikov M, Chin S, Ma Y, Rosenzweig A, Spiegelman BM (2006) Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-gamma coactivator 1alpha. Proc Natl Acad Sci USA 103:10086–10091PubMed PubMedCentral CrossRef
    20.Schwer B, Verdin E (2008) Conserved metabolic regulatory functions of sirtuins. Cell Metab 7:104–112PubMed CrossRef
    21.Michan S, Sinclair D (2007) Sirtuins in mammals: insights into their biological function. Biochem J 404:1–13PubMed PubMedCentral CrossRef
    22.Linzbach AJ (1960) Heart failure from the point of view of quantitative anatomy. Am J Cardiol 5:370–382PubMed CrossRef
    23.Fayssoil A (2009) Heart diseases in mitochondrial encephalomyopathy, lactic acidosis, and stroke syndrome. Congest Heart Fail 15:284–287PubMed CrossRef
    24.Sproule DM, Kaufmann P (2008) Mitochondrial encephalopathy, lactic acidosis, and strokelike episodes: basic concepts, clinical phenotype, and therapeutic management of MELAS syndrome. Ann N Y Acad Sci 1142:133–158PubMed CrossRef
    25.Mancuso M, Orsucci D, Angelini C, Bertini E, Carelli V, Comi GP et al (2014) The m.3243A>G mitochondrial DNA mutation and related phenotypes. A matter of gender? J Neurol 261:504–510PubMed CrossRef
    26.Nesbitt V, Pitceathly RD, Turnbull DM, Taylor RW, Sweeney MG, Mudanohwo EE et al (2013) The UK MRC Mitochondrial Disease Patient Cohort Study: clinical phenotypes associated with the m.3243A>G mutation–implications for diagnosis and management. J Neurol Neurosurg Psychiatry 84:936–938PubMed CrossRef
    27.Silvestri G, Bertini E, Servidei S, Rana M, Zachara E, Ricci E et al (1997) Maternally inherited cardiomyopathy: a new phenotype associated with the A to G AT nt.3243 of mitochondrial DNA (MELAS mutation). Muscle Nerve 20:221–225PubMed CrossRef
    28.Stalder N, Yarol N, Tozzi P, Rotman S, Morris M, Fellmann F et al (2012) Mitochondrial A3243G mutation with manifestation of acute dilated cardiomyopathy. Circu Heart Fail 5:e1–e3CrossRef
    29.Roberts NK, Perloff JK, Kark RA (1979) Cardiac conduction in the Kearns–Sayre syndrome (a neuromuscular disorder associated with progressive external ophthalmoplegia and pigmentary retinopathy). Report of 2 cases and review of 17 published cases. Am J Cardiol 44:1396–1400PubMed CrossRef
    30.Malfatti E, Laforet P, Jardel C, Stojkovic T, Behin A, Eymard B et al (2013) High risk of severe cardiac adverse events in patients with mitochondrial m.3243A>G mutation. Neurology 80:100–105PubMed CrossRef
    31.Okajima Y, Tanabe Y, Takayanagi M, Aotsuka H (1998) A follow up study of myocardial involvement in patients with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS). Heart 80:292–295PubMed PubMedCentral CrossRef
    32.Sproule DM, Kaufmann P, Engelstad K, Starc TJ, Hordof AJ, De Vivo DC (2007) Wolff–Parkinson–White syndrome in patients with MELAS. Arch Neurol 64:1625–1627PubMed CrossRef
    33.Bogousslavsky J, Perentes E, Deruaz JP, Regli F (1982) Mitochondrial myopathy and cardiomyopathy with neurodegenerative features and multiple brain infarcts. J Neurol Sci 55:351–357PubMed CrossRef
    34.Nishizawa M, Tanaka K, Shinozawa K, Kuwabara T, Atsumi T, Miyatake T et al (1987) A mitochondrial encephalomyopathy with cardiomyopathy. A case revealing a defect of complex I in the respiratory chain. J Neurol Sci 78:189–201PubMed CrossRef
    35.Oldfors A, Tulinius M, Holme E, Kalimo H, Kristiansson B, Eriksson BO (1987) Mitochondrial encephalomyopathy. A variant with heart failure and liver steatosis. Acta Neuropathol 74:287–293PubMed CrossRef
    36.Hamazaki S, Okada S, Kusaka H, Fujii T, Okuno T, Kashu I et al (1989) Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes. Report of an autopsy. Acta Pathol Jpn 39:599–606PubMed
    37.Fujii T, Okuno T, Ito M, Mutoh K, Horiguchi Y, Tashiro H et al (1991) MELAS of infantile onset: mitochondrial angiopathy or cytopathy? J Neurol Sci 103:37–41PubMed CrossRef
    38.Muller-Hocker J, Hubner G, Bise K, Forster C, Hauck S, Paetzke I et al (1993) Generalized mitochondrial microangiopathy and vascular cytochrome c oxidase deficiency. Occurrence in a case of MELAS syndrome with mitochondrial cardiomyopathy-myopathy and combined complex I/IV deficiency. Arch Pathol Lab Med 117:202–210PubMed
    39.Sato W, Tanaka M, Sugiyama S, Nemoto T, Harada K, Miura Y et al (1994) Cardiomyopathy and angiopathy in patients with mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes. Am Heart J 128:733–741PubMed CrossRef
    40.Ishikawa Y, Asuwa N, Ishii T, Masuda S, Kiguchi H, Hirai S et al (1995) Severe mitochondrial cardiomyopathy and extra-neuromuscular abnormalities in mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episode (MELAS). Pathol Res Pract 191:64–69 discussion 70–75 PubMed CrossRef
    41.Terauchi A, Tamagawa K, Morimatsu Y, Kobayashi M, Sano T, Yoda S (1996) An autopsy case of mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS) with a point mutation of mitochondrial DNA. Brain Dev 18:224–229PubMed CrossRef
    42.Chin J, Marotta R, Chiotis M, Allan EH, Collins SJ (2014) Detection rates and phenotypic spectrum of m.3243A>G in the MT-TL1 gene: a molecular diagnostic laboratory perspective. Mitochondrion 17:34–41PubMed CrossRef
    43.Pang CY, Lee HC, Wei YH (2001) Enhanced oxidative damage in human cells harboring A3243G mutation of mitochondrial DNA: implication of oxidative stress in the pathogenesis of mitochondrial diabetes. Diabetes Res Clin Pract 54(Suppl 2):S45–S56PubMed CrossRef
    44.Katayama Y, Maeda K, Iizuka T, Hayashi M, Hashizume Y, Sanada M et al (2009) Accumulation of oxidative stress around the stroke-like lesions of MELAS patients. Mitochondrion 9:306–313PubMed CrossRef
    45.Teodorescu C, Reinier K, Dervan C, Uy-Evanado A, Samara M, Mariani R et al (2010) Factors associated with pulseless electric activity versus ventricular fibrillation: the Oregon sudden unexpected death study. Circulation 122:2116–2122PubMed CrossRef
    46.Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, Ong SE et al (2008) A mitochondrial protein compendium elucidates complex I disease biology. Cell 134:112–123PubMed PubMedCentral CrossRef
    47.Ichikawa Y, Ghanefar M, Bayeva M, Wu R, Khechaduri A, Naga Prasad SV et al (2014) Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J Clin Investig 124:617–630PubMed PubMedCentral CrossRef
    48.Lewis W, Dalakas MC (1995) Mitochondrial toxicity of antiviral drugs. Nat Med 1:417–422PubMed CrossRef
    49.Weidemann F, Rummey C, Bijnens B, Stork S, Jasaityte R, Dhooge J et al (2012) The heart in Friedreich ataxia: definition of cardiomyopathy, disease severity, and correlation with neurological symptoms. Circulation 125:1626–1634PubMed CrossRef
    50.Campuzano V, Montermini L, Molto MD, Pianese L, Cossee M, Cavalcanti F et al (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271:1423–1427PubMed CrossRef
    51.Lodi R, Rajagopalan B, Blamire AM, Cooper JM, Davies CH, Bradley JL et al (2001) Cardiac energetics are abnormal in Friedreich ataxia patients in the absence of cardiac dysfunction and hypertrophy: an in vivo 31P magnetic resonance spectroscopy study. Cardiovasc Res 52:111–119PubMed CrossRef
    52.Ricci JE, Gottlieb RA, Green DR (2003) Caspase-mediated loss of mitochondrial function and generation of reactive oxygen species during apoptosis. J Cell Biol 160:65–75PubMed PubMedCentral CrossRef
    53.Gunter TE, Buntinas L, Sparagna G, Eliseev R, Gunter K (2000) Mitochondrial calcium transport: mechanisms and functions. Cell Calcium 28:285–296PubMed CrossRef
    54.Brown DT, Herbert M, Lamb VK, Chinnery PF, Taylor RW, Lightowlers RN et al (2006) Transmission of mitochondrial DNA disorders: possibilities for the future. Lancet 368:87–89PubMed CrossRef
    55.Pfeffer G, Majamaa K, Turnbull DM, Thorburn D, Chinnery PF (2012) Treatment for mitochondrial disorders. Cochrane Database Syst Rev 4:CD004426PubMed
    56.Lagedrost SJ, Sutton MSJ, Cohen MS, Satou GM, Kaufman BD, Perlman SL et al (2011) Idebenone in Friedreich ataxia cardiomyopathy—results from a 6-month phase III study (IONIA). Am Heart J 161(639–45):e1PubMed
    57. http://​www.​santhera.​com/​index.​php?​docid=​212&​vid=​&​lang=​&​newsdate=​201005&​newsid=​1417424&​newslang=​en . Santhera’s MICONOS Trial with Catena®/Sovrima® in Friedreich’s Ataxia Misses Primary Endpoint. 2010
    58.Murphy JL, Blakely EL, Schaefer AM, He L, Wyrick P, Haller RG et al (2008) Resistance training in patients with single, large-scale deletions of mitochondrial DNA. Brain J Neurol 131:2832–2840CrossRef
    59.Taivassalo T, Gardner JL, Taylor RW, Schaefer AM, Newman J, Barron MJ et al (2006) Endurance training and detraining in mitochondrial myopathies due to single large-scale mtDNA deletions. Brain J Neurol 129:3391–3401CrossRef
    60.Bonnet D, Rustin P, Rotig A, Le Bidois J, Munnich A, Vouhe P et al (2001) Heart transplantation in children with mitochondrial cardiomyopathy. Heart 86:570–573PubMed PubMedCentral CrossRef
    61.Tranchant C, Mousson B, Mohr M, Dumoulin R, Welsch M, Weess C et al (1993) Cardiac transplantation in an incomplete Kearns–Sayre syndrome with mitochondrial DNA deletion. Neuromuscul Disord 3:561–566PubMed CrossRef
    62.Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH et al (2013) 2013 ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 128:1810–1852PubMed CrossRef
    63.Nakanishi M, Harada M, Tadamura E, Kotani H, Kawakami R, Kuwahara K et al (2007) Images in cardiovascular medicine. Mitochondrial cardiomyopathy evaluated with cardiac magnetic resonance. Circulation 116:e25–e26PubMed CrossRef
    64.Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A et al (1999) The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 341:709–717PubMed CrossRef
    65.Zannad F, McMurray JJ, Krum H, van Veldhuisen DJ, Swedberg K, Shi H et al (2011) Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med 364:11–21PubMed CrossRef
    66.Schmauss D, Sodian R, Klopstock T, Deutsch MA, Kaczmarek I, Roemer U et al (2007) Cardiac transplantation in a 14-yr-old patient with mitochondrial encephalomyopathy. Pediatr Transplant 11:560–562PubMed CrossRef
    67.Vardas PE, Auricchio A, Blanc JJ, Daubert JC, Drexler H, Ector H et al (2007) Guidelines for cardiac pacing and cardiac resynchronization therapy: The Task Force for Cardiac Pacing and Cardiac Resynchronization Therapy of the European Society of Cardiology. Developed in collaboration with the European Heart Rhythm Association. Eur Heart J 28:2256–2295PubMed CrossRef
    68.Epstein AE, DiMarco JP, Ellenbogen KA, Estes NA 3rd, Freedman RA, Gettes LS et al (2008) ACC/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (writing committee to revise the ACC/AHA/NASPE 2002 guideline update for implantation of cardiac pacemakers and antiarrhythmia devices) developed in collaboration with the American Association for Thoracic Surgery and Society of Thoracic Surgeons. J Am Coll Cardiol 51:e1–e62PubMed CrossRef
    69.Wahbi K, Larue S, Jardel C, Meune C, Stojkovic T, Ziegler F et al (2010) Cardiac involvement is frequent in patients with the m.8344A>G mutation of mitochondrial DNA. Neurology 74:674–677PubMed CrossRef
    70.Majamaa-Voltti K, Peuhkurinen K, Kortelainen ML, Hassinen IE, Majamaa K (2002) Cardiac abnormalities in patients with mitochondrial DNA mutation 3243A>G. BMC Cardiovasc Disord 2:12PubMed PubMedCentral CrossRef
    71.Reddy P, Ocampo A, Suzuki K, Luo J, Bacman SR, Williams SL et al (2015) Selective elimination of mitochondrial mutations in the germline by genome editing. Cell 161:459–469PubMed PubMedCentral CrossRef
    72.Durr A, Cossee M, Agid Y, Campuzano V, Mignard C, Penet C et al (1996) Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N Engl J Med 335:1169–1175PubMed CrossRef
    73.Parkinson MH, Boesch S, Nachbauer W, Mariotti C, Giunti P (2013) Clinical features of Friedreich’s ataxia: classical and atypical phenotypes. J Neurochem 126(Suppl 1):103–117PubMed CrossRef
    74.Koeppen AH (2011) Friedreich’s ataxia: pathology, pathogenesis, and molecular genetics. J Neurol Sci 303:1–12PubMed PubMedCentral CrossRef
    75.Khambatta S, Nguyen DL, Beckman TJ, Wittich CM (2014) Kearns–Sayre syndrome: a case series of 35 adults and children. Int J Gen Med 7:325–332PubMed PubMedCentral
    76.Young TJ, Shah AK, Lee MH, Hayes DL (2005) Kearns–Sayre syndrome: a case report and review of cardiovascular complications. Pacing Clin Electrophysiol 28:454–457PubMed CrossRef
    77.Sanaker PS, Husebye ES, Fondenes O, Bindoff LA (2007) Clinical evolution of Kearns–Sayre syndrome with polyendocrinopathy and respiratory failure. Acta Neurol Scand Suppl 187:64–67PubMed CrossRef
    78.Laloi-Michelin M, Virally M, Jardel C, Meas T, Ingster-Moati I, Lombes A et al (2006) Kearns–Sayre syndrome: an unusual form of mitochondrial diabetes. Diabetes Metab 32:182–186PubMed CrossRef
    79.Finsterer J (2008) Leigh and Leigh-like syndrome in children and adults. Pediatr Neurol 39:223–235PubMed CrossRef
    80.Rahman S, Blok RB, Dahl HH, Danks DM, Kirby DM, Chow CW et al (1996) Leigh syndrome: clinical features and biochemical and DNA abnormalities. Ann Neurol 39:343–351PubMed CrossRef
    81.Riordan-Eva P, Sanders MD, Govan GG, Sweeney MG, Da Costa J, Harding AE (1995) The clinical features of Leber’s hereditary optic neuropathy defined by the presence of a pathogenic mitochondrial DNA mutation. Brain J Neurol 118(Pt 2):319–337CrossRef
    82.Tonska K, Kodron A, Bartnik E (2010) Genotype-phenotype correlations in Leber hereditary optic neuropathy. Biochim Biophys Acta 1797:1119–1123PubMed CrossRef
    83.Andreu AL, Hanna MG, Reichmann H, Bruno C, Penn AS, Tanji K et al (1999) Exercise intolerance due to mutations in the cytochrome b gene of mitochondrial DNA. N Engl J Med 341:1037–1044PubMed CrossRef
    84.de Lonlay P, Valnot I, Barrientos A, Gorbatyuk M, Tzagoloff A, Taanman JW et al (2001) A mutant mitochondrial respiratory chain assembly protein causes complex III deficiency in patients with tubulopathy, encephalopathy and liver failure. Nat Genet 29:57–60PubMed CrossRef
    85.Ciafaloni E, Ricci E, Shanske S, Moraes CT, Silvestri G, Hirano M et al (1992) MELAS: clinical features, biochemistry, and molecular genetics. Ann Neurol 31:391–398PubMed CrossRef
    86.Lorenzoni PJ, Scola RH, Kay CS, Arndt RC, Silvado CE, Werneck LC (2011) MERRF: clinical features, muscle biopsy and molecular genetics in Brazilian patients. Mitochondrion 11:528–532PubMed CrossRef
    87.DiMauro S, Hirano M, Kaufmann P, Tanji K, Sano M, Shungu DC et al (2002) Clinical features and genetics of myoclonic epilepsy with ragged red fibers. Adv Neurol 89:217–229PubMed
    88.Guillausseau PJ, Massin P, Dubois-LaForgue D, Timsit J, Virally M, Gin H et al (2001) Maternally inherited diabetes and deafness: a multicenter study. Ann Intern Med 134:721–728PubMed CrossRef
    89.Maassen JA, Jahangir Tafrechi RS, Janssen GM, Raap AK, Lemkes HH, t Hart LM (2006) New insights in the molecular pathogenesis of the maternally inherited diabetes and deafness syndrome. Endocrinol Metab Clin N Am 35:385–396 x–xi CrossRef
    90.Murphy R, Turnbull DM, Walker M, Hattersley AT (2008) Clinical features, diagnosis and management of maternally inherited diabetes and deafness (MIDD) associated with the 3243A>G mitochondrial point mutation. Diabetic Med J Br Diabetic Assoc 25:383–399CrossRef
    91.Rojo A, Campos Y, Sanchez JM, Bonaventura I, Aguilar M, Garcia A et al (2006) NARP-MILS syndrome caused by 8993 T>G mitochondrial DNA mutation: a clinical, genetic and neuropathological study. Acta Neuropathol 111:610–616PubMed CrossRef
    92.Santorelli FM, Tanji K, Shanske S, DiMauro S (1997) Heterogeneous clinical presentation of the mtDNA NARP/T8993G mutation. Neurology 49:270–273PubMed CrossRef
    93.Bohlega S, Tanji K, Santorelli FM, Hirano M, Al-Jishi A, DiMauro S (1996) Multiple mitochondrial DNA deletions associated with autosomal recessive ophthalmoplegia and severe cardiomyopathy. Neurology 46:1329–1334PubMed CrossRef
    94.Filosto M, Mancuso M, Nishigaki Y, Pancrudo J, Harati Y, Gooch C et al (2003) Clinical and genetic heterogeneity in progressive external ophthalmoplegia due to mutations in polymerase gamma. Arch Neurol 60:1279–1284PubMed CrossRef
    95.Milone M, Massie R (2010) Polymerase gamma 1 mutations: clinical correlations. The Neurologist 16:84–91PubMed CrossRef
    96.Hirano M, Marti R, Ferreiro-Barros C, Vila MR, Tadesse S, Nishigaki Y et al (2001) Defects of intergenomic communication: autosomal disorders that cause multiple deletions and depletion of mitochondrial DNA. Semin Cell Dev Biol 12:417–427PubMed CrossRef
  • 作者单位:Ying-Han R. Hsu (1)
    Haran Yogasundaram (2)
    Nirmal Parajuli (2)
    Lucas Valtuille (2)
    Consolato Sergi (1)
    Gavin Y. Oudit (2)

    1. Department of Laboratory Medicine and Pathology, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
    2. Division of Cardiology, Department of Medicine, Mazankowski Alberta Heart Institute, University of Alberta, 8440 112 Street NW, Edmonton, AB, T6G 2B7, Canada
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Cardiology
  • 出版者:Springer Netherlands
  • ISSN:1573-7322
文摘
Heart failure remains an important clinical burden, and mitochondrial dysfunction plays a key role in its pathogenesis. The heart has a high metabolic demand, and mitochondrial function is a key determinant of myocardial performance. In mitochondrial disorders, hypertrophic remodeling is the early pattern of cardiomyopathy with progression to dilated cardiomyopathy, conduction defects and ventricular pre-excitation occurring in a significant proportion of patients. Cardiac dysfunction occurs in approximately a third of patients with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome, a stereotypical example of a mitochondrial disorder leading to a cardiomyopathy. We performed unique comparative ultrastructural and gene expression in a MELAS heart compared with non-failing controls. Our results showed a remarkable increase in mitochondrial inclusions and increased abnormal mitochondria in MELAS cardiomyopathy coupled with variable sarcomere thickening, heterogeneous distribution of affected cardiomyocytes and a greater elevation in the expression of disease markers. Investigation and management of patients with mitochondrial cardiomyopathy should follow the well-described contemporary heart failure clinical practice guidelines and include an important role of medical and device therapies. Directed metabolic therapy is lacking, but current research strategies are dedicated toward improving mitochondrial function in patients with mitochondrial disorders. Keywords Cardiomyopathy Mitochondria MELAS syndrome HF

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700