Novel insights into iron metabolism by integrating deletome and transcriptome analysis in an iron deficiency model of the yeast Saccharomyces cerevisiae
详细信息    查看全文
  • 作者:William J Jo (1)
    JeungHyoun Kim (1)
    Eric Oh (1)
    Daniel Jaramillo (2)
    Patricia Holman (1)
    Alex V Loguinov (1)
    Adam P Arkin (3) (4)
    Corey Nislow (5) (6) (8)
    Guri Giaever (5) (7) (8)
    Chris D Vulpe (1)
  • 刊名:BMC Genomics
  • 出版年:2009
  • 出版时间:December 2009
  • 年:2009
  • 卷:10
  • 期:1
  • 全文大小:2396KB
  • 参考文献:1. Yip R: Iron deficiency: contemporary scientific issues and international programmatic approaches. / The Journal of nutrition 1994,124(8 Suppl):1479S鈥?490S.
    2. De Freitas J, Wintz H, Kim JH, Poynton H, Fox T, Vulpe C: Yeast, a model organism for iron and copper metabolism studies. / Biometals 2003,16(1):185鈥?97. CrossRef
    3. Kaplan J, McVey Ward D, Crisp RJ, Philpott CC: Iron鈥揹ependent metabolic remodeling in S. cerevisiae. / Biochimica et biophysica acta 2006,1763(7):646鈥?51. j.bbamcr.2006.03.008">CrossRef
    4. Yamaguchi鈥揑wai Y, Dancis A, Klausner RD: AFT1: a mediator of iron regulated transcriptional control in Saccharomyces cerevisiae. / Embo Journal 1995,14(6):1231鈥?239.
    5. Yamaguchi鈥揑wai Y, Ueta R, Fukunaka A, Sasaki R: Subcellular localization of Aft1 transcription factor responds to iron status in Saccharomyces cerevisiae. / J Biol Chem 2002,277(21):18914鈥?8918. jbc.M200949200">CrossRef
    6. Shakoury鈥揈lizeh M, Tiedeman J, Rashford J, Ferea T, Demeter J, Garcia E, Rolfes R, Brown PO, Botstein D, Philpott CC: Transcriptional remodeling in response to iron deprivation in Saccharomyces cerevisiae. / Mol Biol Cell 2004,15(3):1233鈥?243. CrossRef
    7. Blaiseau PL, Lesuisse E, Camadro JM: Aft2p, a novel iron鈥搑egulated transcription activator that modulates, with Aft1p, intracellular iron use and resistance to oxidative stress in yeast. / Journal of Biological Chemistry 2001,276(36):34221鈥?4226. jbc.M104987200">CrossRef
    8. Rutherford JC, Jaron S, Ray E, Brown PO, Winge DR: A second iron鈥搑egulatory system in yeast independent of Aft1p. / Proceedings of the National Academy of Sciences of the United States of America 2001,98(25):14322鈥?4327. CrossRef
    9. Rutherford JC, Ojeda L, Balk J, Muhlenhoff U, Lill R, Winge DR: Activation of the iron regulon by the yeast Aft1/Aft2 transcription factors depends on mitochondrial but not cytosolic iron鈥搒ulfur protein biogenesis. / J Biol Chem 2005,280(11):10135鈥?0140. jbc.M413731200">CrossRef
    10. Puig S, Askeland E, Thiele DJ: Coordinated remodeling of cellular metabolism during iron deficiency through targeted mRNA degradation. / Cell 2005,120(1):99鈥?10. j.cell.2004.11.032">CrossRef
    11. Puig S, Vergara SV, Thiele DJ: Cooperation of two mRNA鈥揵inding proteins drives metabolic adaptation to iron deficiency. / Cell metabolism 2008,7(6):555鈥?64. j.cmet.2008.04.010">CrossRef
    12. Felice MR, De Domenico I, Li L, Ward DM, Bartok B, Musci G, Kaplan J: Post鈥搕ranscriptional regulation of the yeast high affinity iron transport system. / The Journal of biological chemistry 2005,280(23):22181鈥?2190. jbc.M414663200">CrossRef
    13. Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H, / et al.: Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. / Science 1999,285(5429):901鈥?06. CrossRef
    14. Davis鈥揔aplan SR, Ward DM, Shiflett SL, Kaplan J: Genome鈥搘ide analysis of iron鈥揹ependent growth reveals a novel yeast gene required for vacuolar acidification. / J Biol Chem 2004,279(6):4322鈥?329. jbc.M310680200">CrossRef
    15. Dudley AM, Janse DM, Tanay A, Shamir R, Church GM: A global view of pleiotropy and phenotypically derived gene function in yeast. / Mol Syst Biol 2005,1(1):msb4100004鈥揈4100001. CrossRef
    16. Lesuisse E, Knight SA, Courel M, Santos R, Camadro JM, Dancis A: Genome鈥搘ide screen for genes with effects on distinct iron uptake activities in Saccharomyces cerevisiae. / Genetics 2005,169(1):107鈥?22. CrossRef
    17. Shoemaker DD, Lashkari DA, Morris D, Mittmann M, Davis RW: Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar鈥揷oding strategy. / Nat Genet 1996,14(4):450鈥?56. CrossRef
    18. Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S, Dow S, Lucau鈥揇anila A, Anderson K, Andre B, / et al.: Functional profiling of the Saccharomyces cerevisiae genome. / Nature 2002,418(6896):387鈥?91. CrossRef
    19. Jo WJ, Loguinov A, Chang M, Wintz H, Nislow C, Arkin AP, Giaever G, Vulpe CD: Identification of genes involved in the toxic response of Saccharomyces cerevisiae against iron and copper overload by parallel analysis of deletion mutants. / Toxicol Sci 2008,101(1):140鈥?51. CrossRef
    20. Loguinov AV, Mian IS, Vulpe CD: Exploratory differential gene expression analysis in microarray experiments with no or limited replication. / Genome Biol 2004,5(3):R18. CrossRef
    21. Eason RG, Pourmand N, Tongprasit W, Herman ZS, Anthony K, Jejelowo O, Davis RW, Stolc V: Characterization of synthetic DNA bar codes in Saccharomyces cerevisiae gene鈥揹eletion strains. / Proc Natl Acad Sci USA 2004,101(30):11046鈥?1051. CrossRef
    22. Jo WJ, Loguinov A, Chang M, Wintz H, Nislow C, Arkin AP, Giaever G, Vulpe CD: Identification of Genes Involved in the Toxic Response of Saccharomyces cerevisiae against Iron and Copper Overload by Parallel Analysis of Deletion Mutants. / Toxicol Sci 2007.
    23. Kiemer L, Costa S, Ueffing M, Cesareni G: WI鈥揚HI: a weighted yeast interactome enriched for direct physical interactions. / Proteomics 2007,7(6):932鈥?43. CrossRef
    24. Teixeira MC, Monteiro P, Jain P, Tenreiro S, Fernandes AR, Mira NP, Alenquer M, Freitas AT, Oliveira AL, Sa鈥揅orreia I: The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae. / Nucleic acids research 2006, (34 Database):D446鈥?51.
    25. Ideker T, Ozier O, Schwikowski B, Siegel AF: Discovering regulatory and signalling circuits in molecular interaction networks. / Bioinformatics (Oxford, England) 2002,18(Suppl 1):S233鈥?40.
    26. Philpott CC, Protchenko O, Kim YW, Boretsky Y, Shakoury鈥揈lizeh M: The response to iron deprivation in Saccharomyces cerevisiae: expression of siderophore鈥揵ased systems of iron uptake. / Biochem Soc Trans 2002,30(4):698鈥?02. CrossRef
    27. Protchenko O, Ferea T, Rashford J, Tiedeman J, Brown PO, Botstein D, Philpott CC: Three cell wall mannoproteins facilitate the uptake of iron in Saccharomyces cerevisiae. / J Biol Chem 2001,276(52):49244鈥?9250. jbc.M109220200">CrossRef
    28. Yun CW, Tiedeman JS, Moore RE, Philpott CC: Siderophore鈥搃ron uptake in Saccharomyces cerevisiae 鈥?Identification of ferrichrome and fusarinine transporters. / Journal of Biological Chemistry 2000,275(21):16354鈥?6359. jbc.M001456200">CrossRef
    29. De Freitas JM, Kim JH, Poynton H, Su T, Wintz H, Fox T, Holman P, Loguinov A, Keles S, Laan M, / et al.: Exploratory and confirmatory gene expression profiling of mac1Delta. / J Biol Chem 2004,279(6):4450鈥?458. jbc.M212308200">CrossRef
    30. Raguzzi F, Lesuisse E, Crichton RR: Iron storage in Saccharomyces cerevisiae. / FEBS Lett 1988,231(1):253鈥?58. CrossRef
    31. Radisky DC, Snyder WB, Emr SD, Kaplan J: Characterization of VPS41, a gene required for vacuolar trafficking and high鈥揳ffinity iron transport in yeast. / Proc Natl Acad Sci USA 1997,94(11):5662鈥?666. CrossRef
    32. Szczypka MS, Zhu Z, Silar P, Thiele DJ: Saccharomyces cerevisiae mutants altered in vacuole function are defective in copper detoxification and iron鈥搑esponsive gene transcription. / Yeast 1997,13(15):1423鈥?435. CrossRef
    33. Bode HP, Dumschat M, Garotti S, Fuhrmann GF: Iron sequestration by the yeast vacuole. A study with vacuolar mutants of Saccharomyces cerevisiae. / Eur J Biochem 1995,228(2):337鈥?42. j.1432-1033.1995.00337.x">CrossRef
    34. Eide DJ, Bridgham JT, Zhao Z, Mattoon JR: The vacuolar H(+)鈥揂TPase of Saccharomyces cerevisiae is required for efficient copper detoxification, mitochondrial function, and iron metabolism. / Mol Gen Genet 1993,241(3鈥?):447鈥?56.
    35. Lesuisse E, Labbe P: Effects of cadmium and of YAP1 and CAD1/YAP2 genes on iron metabolism in the yeast Saccharomyces cerevisiae. / Microbiology (Reading, England) 1995,141(Pt 11):2937鈥?943. CrossRef
    36. Wu A, Wemmie JA, Edgington NP, Goebl M, Guevara JL, Moye鈥揜owley WS: Yeast bZip proteins mediate pleiotropic drug and metal resistance. / The Journal of biological chemistry 1993,268(25):18850鈥?8858.
    37. Ruotolo R, Marchini G, Ottonello S: Membrane transporters and protein traffic networks differentially affecting metal tolerance: a genomic phenotyping study in yeast. / Genome biology 2008,9(4):R67. CrossRef
    38. Hasan MR, Koikawa S, Kotani S, Miyamoto S, Nakagawa H: Ferritin forms dynamic oligomers to associate with microtubules in vivo: implication for the role of microtubules in iron metabolism. / Experimental cell research 2006,312(11):1950鈥?960. j.yexcr.2006.02.023">CrossRef
    39. Birrell GW, Brown JA, Wu HI, Giaever G, Chu AM, Davis RW, Brown JM: Transcriptional response of Saccharomyces cerevisiae to DNA鈥揹amaging agents does not identify the genes that protect against these agents. / Proc Natl Acad Sci USA 2002,99(13):8778鈥?783. CrossRef
    40. Haugen AC, Kelley R, Collins JB, Tucker CJ, Deng C, Afshari CA, Brown JM, Ideker T, Van Houten B: Integrating phenotypic and expression profiles to map arsenic鈥搑esponse networks. / Genome biology 2004,5(12):R95. CrossRef
    41. Berry DB, Gasch AP: Stress鈥揳ctivated genomic expression changes serve a preparative role for impending stress in yeast. / Molecular biology of the cell 2008,19(11):4580鈥?587. CrossRef
    42. Puig S, Lau M, Thiele DJ: Cti6 is an Rpd3鈥揝in3 histone deacetylase鈥揳ssociated protein required for growth under iron鈥搇imiting conditions in Saccharomyces cerevisiae. / J Biol Chem 2004,279(29):30298鈥?0306. jbc.M313463200">CrossRef
    43. Papamichos鈥揅hronakis M, Petrakis T, Ktistaki E, Topalidou I, Tzamarias D: Cti6, a PHD domain protein, bridges the Cyc8鈥揟up1 corepressor and the SAGA coactivator to overcome repression at GAL1. / Molecular cell 2002,9(6):1297鈥?305. CrossRef
    44. Crisp RJ, Adkins EM, Kimmel E, Kaplan J: Recruitment of Tup1p and Cti6p regulates heme鈥揹eficient expression of Aft1p target genes. / The EMBO journal 2006,25(3):512鈥?21. j.emboj.7600961">CrossRef
    45. Spiropoulos A, Bisson LF: MET17 and Hydrogen Sulfide Formation in Saccharomyces cerevisiae. / Appl Environ Microbiol 2000,66(10):4421鈥?426. CrossRef
    46. Hand RA, Jia N, Bard M, Craven RJ: Saccharomyces cerevisiae Dap1p, a novel DNA damage response protein related to the mammalian membrane鈥揳ssociated progesterone receptor. / Eukaryotic cell 2003,2(2):306鈥?17. CrossRef
    47. Craven RJ, Mallory JC, Hand RA: Regulation of iron homeostasis mediated by the heme鈥揵inding protein Dap1 (damage resistance protein 1) via the P450 protein Erg11/Cyp51. / The Journal of biological chemistry 2007,282(50):36543鈥?6551. jbc.M706770200">CrossRef
    48. Muhlenhoff U, Stadler JA, Richhardt N, Seubert A, Eickhorst T, Schweyen RJ, Lill R, Wiesenberger G: A specific role of the yeast mitochondrial carriers MRS3/4p in mitochondrial iron acquisition under iron鈥搇imiting conditions. / The Journal of biological chemistry 2003,278(42):40612鈥?0620. jbc.M307847200">CrossRef
    49. Zhang Y, Lyver ER, Knight SA, Lesuisse E, Dancis A: Frataxin and mitochondrial carrier proteins, Mrs3p and Mrs4p, cooperate in providing iron for heme synthesis. / The Journal of biological chemistry 2005,280(20):19794鈥?9807. jbc.M500397200">CrossRef
    50. Zhang Y, Lyver ER, Knight SA, Pain D, Lesuisse E, Dancis A: Mrs3p, Mrs4p, and frataxin provide iron for Fe鈥揝 cluster synthesis in mitochondria. / The Journal of biological chemistry 2006,281(32):22493鈥?2502. jbc.M604246200">CrossRef
    51. Hughes TR: Yeast and drug discovery. / Functional & integrative genomics 2002,2(4鈥?):199鈥?11. CrossRef
  • 作者单位:William J Jo (1)
    JeungHyoun Kim (1)
    Eric Oh (1)
    Daniel Jaramillo (2)
    Patricia Holman (1)
    Alex V Loguinov (1)
    Adam P Arkin (3) (4)
    Corey Nislow (5) (6) (8)
    Guri Giaever (5) (7) (8)
    Chris D Vulpe (1)

    1. Department of Nutritional Sciences and Toxicology, University of California, 94720, Berkeley, California, USA
    2. Stanford Genome Technology Center, Stanford University, 94304, Palo Alto, California, USA
    3. Department of Bioengineering, University of California, 94720, Berkeley, California, USA
    4. Physical Biosciences Division, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, USA
    5. University of Toronto, Department of Molecular Genetics, M5S3E1, Ontario, Toronto, Canada
    6. Banting and Best Department of Medical Research, University of Toronto, M5S3E1, Ontario, Toronto, Canada
    8. Donnelley Centre for Cellular and Biomolecular Research, University of Toronto, M5S3E1, Ontario, Toronto, Canada
    7. Department of Pharmaceutical Sciences, University of Toronto, M5S3E1, Ontario, Toronto, Canada
文摘
Background Iron-deficiency anemia is the most prevalent form of anemia world-wide. The yeast Saccharomyces cerevisiae has been used as a model of cellular iron deficiency, in part because many of its cellular pathways are conserved. To better understand how cells respond to changes in iron availability, we profiled the yeast genome with a parallel analysis of homozygous deletion mutants to identify essential components and cellular processes required for optimal growth under iron-limited conditions. To complement this analysis, we compared those genes identified as important for fitness to those that were differentially-expressed in the same conditions. The resulting analysis provides a global perspective on the cellular processes involved in iron metabolism. Results Using functional profiling, we identified several genes known to be involved in high affinity iron uptake, in addition to novel genes that may play a role in iron metabolism. Our results provide support for the primary involvement in iron homeostasis of vacuolar and endosomal compartments, as well as vesicular transport to and from these compartments. We also observed an unexpected importance of the peroxisome for growth in iron-limited media. Although these components were essential for growth in low-iron conditions, most of them were not differentially-expressed. Genes with altered expression in iron deficiency were mainly associated with iron uptake and transport mechanisms, with little overlap with those that were functionally required. To better understand this relationship, we used expression-profiling of selected mutants that exhibited slow growth in iron-deficient conditions, and as a result, obtained additional insight into the roles of CTI6, DAP1, MRS4 and YHR045W in iron metabolism. Conclusion Comparison between functional and gene expression data in iron deficiency highlighted the complementary utility of these two approaches to identify important functional components. This should be taken into consideration when designing and analyzing data from these type of studies. We used this and other published data to develop a molecular interaction network of iron metabolism in yeast.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700