A continental slope stability evaluation in the Zhujiang River Mouth Basin in the South China Sea
详细信息    查看全文
  • 作者:Ke Liu (1) (2) (3)
    Jianhua Wang (1) (2)
  • 关键词:South China Sea ; continental slope stability ; geographic information system ; evaluation
  • 刊名:Acta Oceanologica Sinica
  • 出版年:2014
  • 出版时间:November 2014
  • 年:2014
  • 卷:33
  • 期:11
  • 页码:155-160
  • 全文大小:1,048 KB
  • 参考文献:1. Alexander C R, Simoneau A M. 1999. Spatial variability in sedimentary processes on the Eel continental slope. Mar Eol, 154(1-): 243-54
    2. Chen Renfa, Kang Ying, Huang Xinhui, et al. 2009. Seismic risk analysis in northern South China Sea. South China Journal of Seismology (in Chinese), 29(4): 36-5
    3. Lambe T W, Whitman RV. 1969. Soil Mechanics. New York: Wiley, 553
    4. Lee H J, Edwards B D. 1986. Regional method to assess offshore slope stability. Geotech Eng, 112(5): 489-09 CrossRef
    5. Lee H, Locat J, Dartnell P, et al. 1999. Regional variability of slope stability: application to the Eel margin, California. Marine Geology, 154(1-): 305-21 CrossRef
    6. Liao S S C, Whitman R V. 1986. Overburden correction factors for SPT in sand. Journal of Geotechnical Engineering, 112(3): 373-77 CrossRef
    7. Liu Zhongchen, Liu Baohua. 2005. China Offshore Topography and Adjacent Waters (in Chinese). Beijing: China Ocean Press, 180-24
    8. Lu Tinghao, Liu Zude, Yin zongze, et al. 2005. Advanced Soil Mechanics (in Chinese). Beijing: Mechanical Industry Press, 300
    9. Luan Xiwu, Peng Xuechao, Qiu Yan. 2009. The structure of the high speed deposit formation in north slope of the South China Sea. Geoscience (in Chinese), 23(2): 183-98
    10. Luan Xiwu, Peng Xuechao, Wang Yingmin, et al. 2010. Sea sand wave characteristics and properties in South China Sea continental shelf. Journal of Geology (in Chinese), 84(2): 233-44
    11. Maslin M, Naja M, Bilal H, et al. 1998. Sea-level and gas hydrate controlled catastrophic sediment failure of the Amazon Fan. Geology, 26(12): 1107-110 CrossRef
    12. Morgenstern N R. 1967. Submarine slumping and the initiation of turbidity currents. In: Richards A, Ed. Marine Geotechnique. Urbana: University of Illinois Press, 189-10
    13. Rothwell R G, Thomson J, K?hler G. 1998. Low-sea-level emplacement of a very large Late Pleistocene “megaturbidite-in the western Mediterranean Sea. Nature, 393(6674): 377-80 CrossRef
    14. Seed H B, Idriss I M. 1971. Simplified procedure for evaluating soil liquefaction potential. Soil Mech Found Eng Div, 97(9): 1249-273
    15. Song Haibin. 2003. The study of the dynamic evolution system of natural gas hydrate (II): Submarine landslide. Progress in Geophysics (in Chinese), 18(3): 503-11
    16. Wu Shiguo, Chen Shanshan, Wang Zhijun, et al. 2008. Submarine landslide and risk evaluation on its instability in the deepwater continental margin. Geoscience (in Chinese), 22(3): 430-36
    17. Xu Huilong, Qiu Xuelin, Zhao Minghui, et al. 2006. The crustal structure features and epicenter construction of Nan’ao earthquake (M=7.5) in northeast of South China Sea. Science Bulletin (in Chinese), 11(S2): 83-0
    18. Zhang Fuyuan, Zhang Weiyan, Zhang Xiaoyu, et al. 2010. Indices of classification and nomenclature for deep-sea sediment and principal component analysis. Acta Oceanologica Sinica, 32(6):118-29
    19. Zou Dapeng, Lu Bo, Yan Pin, et al. 2012. The temperature change of the three types of sound velocity in the north of the South China Sea seabed sediments. Journal of Geophysics (in Chinese), 55(3): 1017-024
  • 作者单位:Ke Liu (1) (2) (3)
    Jianhua Wang (1) (2)

    1. State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, 300072, China
    2. Geotechnical Engineering Institute, Tianjin University, Tianjin, 300072, China
    3. College of Mining Engineering, Hebei United University, Tangshan, 063009, China
  • ISSN:1869-1099
文摘
In nature, a slope stability is determined by the ratio of a sliding resistance to a slide force. The slide force of a marine deep-water continental slope is mainly affected by sediment mechanics properties, a topography, and a marine seismic. However, the sliding resistance is mainly affected by sedimentary patterns and a sedimentary stress history. Both of these are different from case to case, and their impact can be addressed when the data are organized in a geographic information system (GIS). The study area on the continental slope in Zhujiang River Mouth Basin in South China Sea provides an excellent opportunity to apply GIS spatial analysis technology for the evaluation of the slope stability. In this area, a continental slope topography and a three-dimension (3–D) topography mapping show a sea-floor morphology and the distribution of a slope steepness in good detail, and the sediment analysis of seabed samples and an indoor appraisal reveals the variability of a sediment density near the sea-floor surface. On the basis of the results of nine geotechnical studies of submarine study areas, it has worked out that an equivalent cyclic shear stress ratio is roughly between 0.158 and 0.933, which is mainly depending on the initial water content of sediment. A regional density, slope and level of anticipated seismic shaking information are combined in a GIS framework to yield a map that illustrates a continental slope stability zoning under the influencing factors in Zhujiang River Mouth Basin in the South China Sea. The continental slope stability evaluation can contribute to north resources development in the South China Sea, the marine functional zoning, the marine engineering construction and adjust measures to local conditions, at the same time also can provide references for other deep-water slope stability analysis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700