Frequent Pattern Discovery in Multiple Biological Networks: Patterns and Algorithms
详细信息    查看全文
  • 作者:Wenyuan Li (1)
    Haiyan Hu (2)
    Yu Huang (1)
    Haifeng Li (3)
    Michael R. Mehan (1)
    Juan Nunez-Iglesias (1)
    Min Xu (1)
    Xifeng Yan (4)
    Xianghong Jasmine Zhou (1) xjzhou@usc.edu
  • 关键词:Frequent pattern &#8211 ; Integrative network analysis &#8211 ; Coherent dense subgraph &#8211 ; Frequent dense vertex ; set &#8211 ; Generic frequent subgraph &#8211 ; Differential subgraph &#8211 ; Recurrent heavy subgraph &#8211 ; Tensor representation of multiple networks
  • 刊名:Statistics in Biosciences
  • 出版年:2012
  • 出版时间:May 2012
  • 年:2012
  • 卷:4
  • 期:1
  • 页码:157-176
  • 全文大小:1.7 MB
  • 参考文献:1. Achlioptas D, McSherry F (2007) Fast computation of low-rank matrix approximations. J ACM 54(2):9
    2. Arora S, Hazan E, Kale S (2006) A fast random sampling algorithm for sparsifying matrices. In: Approximation, randomization, and combinatorial optimization. Algorithms and techniques. Springer, Berlin, pp 272–279
    3. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25(1):25–29
    4. Barabasi A, Oltvai Z (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5(2):101–113
    5. Breiman L (2001) Random forests. Mach Learn 45(1):5–32
    6. Butte AJ, Chen R (2006) Finding disease-related genomic experiments within an international repository: first steps in translational bioinformatics. In: AMIA Annual Symposium proceedings, pp 106–110
    7. Butte AJ, Kohane IS (2006) Creation and implications of a phenome-genome network. Nat Biotechnol 24(1):55–62
    8. Collette Y, Siarry P (2003) Multiobjective optimization: principles and case studies. Springer, Berlin
    9. Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30(1):207–210
    10. Gollub J, Ball CA, Binkley G, Demeter J, Finkelstein DB, Hebert JM, Hernandez-Boussard T, Jin H, Kaloper M, Matese JC, Schroeder M, Brown PO, Botstein D, Sherlock G (2003) The Stanford microarray database: data access and quality assessment tools. Nucleic Acids Res 31(1):94–96
    11. Hermjakob H, Montecchi-Palazzi L, Lewington C, Mudali S, Kerrien S, Orchard S, Vingron M, Roechert B, Roepstorff P, Valencia A, Margalit H, Armstrong J, Bairoch A, Cesareni G, Sherman D, Apweiler R (2004) IntAct: an open source molecular interaction database. Nucleic Acids Res D 32:452–455
    12. Hu H, Yan X, Huang Y, Han J, Zhou XJ (2005) Mining coherent dense subgraphs across massive biological networks for functional discovery. Bioinformatics 21(Suppl 1):213–221
    13. Huang Y, Li H, Hu H, Yan X, Waterman MS, Huang H, Zhou XJ (2007) Systematic discovery of functional modules and context-specific functional annotation of human genome. Bioinformatics 23(13):222–229
    14. Kelley B, Sharan R, Karp R, Sittler T, Root D, Stockwell B, Ideker T (2003) Conserved pathways within bacteria and yeast as revealed by global protein network alignment. Proc Natl Acad Sci USA 100(20):11394–11399
    15. Kirkpatrick S, Gelatt C, Vecchi M (1983) Optimization by simulated annealing. Science 220(4598):671–680
    16. Koyut眉rk M, Grama A, Szpankowski W (2004) An efficient algorithm for detecting frequent subgraphs in biological networks. Bioinformatics 20(Suppl 1):200–207
    17. Koyut眉rk M, Kim Y, Subramaniam S, Szpankowski W, Grama A (2006) Detecting Conserved Interaction Patterns in Biological Networks. J Comput Biol 13(7):1299–1322
    18. Koyut眉rk M, Kim Y, Topkara U, Subramaniam S, Szpankowski W, Grama A (2006) Pairwise alignment of protein interaction networks. J Comput Biol 13(2):182–199
    19. Krishna V, Suri NNRR, Athithan G (2011) A comparative survey of algorithms for frequent subgraph discovery. Curr Sci 100(2):190–198
    20. Li W, Liu CC, Zhang T, Li H, Waterman MS, Zhou XJ (2011) Integrative analysis of many weighted co-expression networks using tensor computation. PLoS Comput Biol. doi:
    21. Mehan MR, Nunez-Iglesias J, Kalakrishnan M, Waterman MS, Zhou XJ (2009) An integrative network approach to map the transcriptome to the phenome. J Comput Biol 16(8):1023–1034
    22. Mitchell JA, Aronson AR, Mork JG, Folk LC, Humphrey SM, Ward JM (2003) Gene indexing: characterization and analysis of nlm’s generifs. In: AMIA Annual Symposium proceedings, pp 460–464
    23. Newman MEJ (2004) Analysis of weighted networks. Phys Rev E 70(5):056,131
    24. Papin J, Price N, Wiback S, Fell D, Palsson B (2003) Metabolic pathways in the post-genome era. Trends Biochem Sci 28(5):250–258
    25. Ruepp A, Waegele B, Lechner M, Brauner B, Dunger-Kaltenbach I, Fobo G, Frishman G, Montrone C, Mewes H (2010) CORUM: the comprehensive resource of mammalian protein complexes–2009. Nucleic Acids Res 38:D497–D501
    26. Serrano MA, Bogu帽谩 M, Vespignani A (2009) Extracting the multiscale backbone of complex weighted networks. Proc Natl Acad Sci USA 106(16):6483–6488
    27. Sharan R, Suthram S, Kelley RM, Kuhn T, McCuine S, Uetz P, Sittler T, Karp RM, Ideker T (2005) Conserved patterns of protein interaction in multiple species. Proc Natl Acad Sci USA 102(6):1974–1979
    28. Suman B, Kumar P (2006) A survey of simulated annealing as a tool for single and multiobjective optimization. J Oper Res Soc 57(10):1143–1160
    29. Tsay AA, Lovejoy WS, Karger DR (1999) Random sampling in cut, flow, and network design problems. Math Oper Res 24(2):383–413
    30. Wu LF, Hughes TR, Davierwala AP, Robinson MD, Stoughton R, Altschuler SJ (2002) Large-scale prediction of saccharomyces cerevisiae gene function using overlapping transcriptional clusters. Nat Genet 31(3):255–265
    31. Xu M, Kao M, Nunez-Iglesias J, Nevins J, West M, Zhou X (2008) An integrative approach to characterize disease-specific pathways and their coordination: a case study in cancer. BMC Genomics 9(Suppl 1):S12
    32. Yan X, Mehan MR, Huang Y, Waterman MS, Yu PS, Zhou XJ (2007) A graph-based approach to systematically reconstruct human transcriptional regulatory modules. Bioinformatics 23(13):577–586
    33. Zhang T (2010) Analysis of multi-stage convex relaxation for sparse regularization. J Mach Learn Res 11:1081–1107
    34. Zhou X, Kao M, Huang H, Wong A, Nunez-Iglesias J, Primig M, Aparicio O, Finch C, Morgan T, Wong W et al. (2005) Functional annotation and network reconstruction through cross-platform integration of microarray data. Nat Biotechnol 23:238–243
  • 作者单位:1. Program in Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA2. School of Electrical Engineering and Computer Science, University of Central Florida, Orlando, Fl 32816-2005, USA3. Motorola Labs, 2900 S Diablo Way, Tempe, AZ 85282, USA4. Computer Science Department, University of California at Santa Barbara, Santa Barbara, CA 93106-5110, USA
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Statistics
    Statistics for Life Sciences, Medicine and Health Sciences
    Biostatistics
    Theoretical Ecology
  • 出版者:Springer New York
  • ISSN:1867-1772
文摘
The rapid accumulation of biological network data is creating an urgent need for computational methods capable of integrative network analysis. This paper discusses a suite of algorithms that we have developed to discover biologically significant patterns that appear frequently in multiple biological networks: coherent dense subgraphs, frequent dense vertex-sets, generic frequent subgraphs, differential subgraphs, and recurrent heavy subgraphs. We demonstrate these methods on gene co-expression networks, using the identified patterns to systematically annotate gene functions, map genome to phenome, and perform high-order cooperativity analysis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700