Trait-related flowering patterns in submediterranean mountain meadows
详细信息    查看全文
  • 作者:Andrea Catorci (1)
    Sabrina Cesaretti (1)
    Renata Gatti (1)
    Federico Maria Tardella (1) dtfederico.tardella@unicam.it
  • 关键词:Central Italy &#8211 ; Flowering patterns &#8211 ; Functional traits &#8211 ; Mountain meadows &#8211 ; Phenology
  • 刊名:Plant Ecology
  • 出版年:2012
  • 出版时间:August 2012
  • 年:2012
  • 卷:213
  • 期:8
  • 页码:1315-1328
  • 全文大小:282.3 KB
  • 参考文献:1. Ansquer P, Al Haj Khaled R, Cruz P, Theau J-P, Therond O, Duru M (2009) Characterizing and predicting plant phenology in species-rich grasslands. Grass Forage Sci 64(1):57–70
    2. Bazzaz FA (1991) Habitat selection in plants. Am Nat 137:116–130
    3. Bloom SA (1981) Similarity indices in community studies: potential pitfalls. Mar Ecol Prog Ser 5:125–128
    4. Bolmgren K, Cowan PD (2008) Time-size tradeoffs: a phylogenetic comparative study of flowering time, plant height and seed mass in a north temperate-flora. Oikos 117:424–429
    5. Bonan G (2008) Ecological climatology. Concepts and applications, 2nd edn. Cambridge University Press, Cambridge 550 pp
    6. Borcard D, Legendre P (1994) Environmental control and spatial structure in ecological communities: an example using oribatid mites (Acari, Oribatei). Environ Ecol Stat 1:37–61
    7. Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055
    8. Bradbury IK, Hofstra G (1976) The partitioning of net energy resources in two populations of Solidago canadensis during a single developmental cycle in southern Ontario. Can J Bot 54:2449–2456
    9. Braun-Blanquet J (1964) Pflanzensoziologie, 3rd edn. Springer, Wien, New York 865 pp
    10. Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27(4):325–349
    11. Bullock JM, Franklin J, Stevenson MJ, Silvertown J, Coulson SJ, Gregory SJ, Tofts R (2001) A plant trait analysis of responses to grazing in a long-term experiment. J Appl Ecol 38(2):253–267
    12. Catorci A, Gatti R, Ballelli S (2007) Studio fitosociologico della vegetazione delle praterie montane dell’Appennino maceratese. In: Catorci A, Gatti R (eds) Le praterie montane dell’Appennino maceratese. Braun-Blanquetia 42:101–143
    13. Catorci A, Ottaviani G, Cesaretti S (2011) Functional and coenological changes under different long-term management conditions in Apennine meadows (central Italy). Phytocoenologia 41(1):45–58
    14. Catorci A, Ottaviani G, Vitasović Kosić I, Cesaretti S (2012a) Effect of spatial and temporal patterns of stress and disturbance intensities in a sub-Mediterranean grassland. Plant Biosyst 146(2):352–367. doi:10.1080/11263504.2011.623192
    15. Catorci A, Gatti R, Cesaretti S (2012b) Effect of sheep and horse grazing on species and functional composition of sub-Mediterranean grasslands. Appl Veg Sci. doi:10.1111/j.1654-109X.2012.01197.x
    16. Chabot BF, Hicks DJ (1982) The ecology of leaf life spans. Ann Rev Ecol Syst 13:229–259
    17. Chapin FS III, Autumn K, Pugnaire F (1993) Evolution of suites of traits in response to environmental stress. Am Nat 142:S78–S92
    18. Cole BJ (1981) Overlap, regularity, and flowering phenologies. Am Nat 117:993–997
    19. Dalaka A, Sgardelis SP (2006) Life strategies and spatial arrangement of grasses in a Mediterranean ecosystem in Greece. Grass Forage Sci 61:218–231
    20. de Bello F, Lepš J, Sebasti脿 M-T (2005) Predictive value of plant traits to grazing along a climatic gradient in the Mediterranean. J Appl Ecol 42:824–833
    21. D铆az S, Cabido M (2001) Vive la diff茅rence: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16:646–655
    22. D铆az S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC et al (2004) The plant traits that drive ecosystems: evidence from three continents. J Veg Sci 15:295–304
    23. Du G, Qi W (2010) Trade-offs between flowering time, plant height, and seed size within and across 11 communities of aQingHai-Tibetan flora. Plant Ecol 209:321–333
    24. Dufr锚ne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366
    25. Elzinga JA, Atlan A, Biere A, Gigord L, Weis AE, Bernasconi G (2007) Time after time: flowering phenology and biotic interactions. Trends Ecol Evol 22:432–439
    26. Friedman D, Alpert P (1991) Reciprocal transport between ramets increases growth in Fragaria chiloensis when light and nitrogen occur in separate patches but only if patches are rich. Oecologia 86:76–80
    27. Gatti R, Carotenuto L, Catorci A (2007a) Sinfenologia di alcuni syntaxa prativi dell’Appennino umbro-marchigiano (Italia centrale). In: Catorci A, Gatti R (eds) Le praterie montane dell’Appennino maceratese. Braun-Blanquetia 42:179–202
    28. Gatti R, Vitanzi A, Cesaretti S, Catorci A (2007b) Contributo alla quantificazione della fitomassa epigea di alcuni pascoli dell’Appennino umbro-marchigiano (Italia centrale). In: Catorci A, Gatti R (eds) Le praterie montane dell’Appennino maceratese. Braun-Blanquetia 42:255–266
    29. Golluscio RA, Oesterheld M, Aguiar MR (2005) Relationship between phenology and life form: a test with 25 Patagonian species. Ecography 28:273–282
    30. Grime JP (2001) Plant strategies, vegetation processes, and ecosystem properties, 2nd edn. Wiley, New York 417 pp
    31. Grime JP, Hodgson JG, Hunt R (1988) Comparative plant ecology: a functional approach to common British species. Unwin Hyman, London 742 pp
    32. Hadley EB, Bliss LC (1964) Energy relationships of alpine plants on Mt. Washington, New Hampshire. Ecol Monogr 34(4):331–357
    33. Harris W (2001) Formulation of pasture seed mixtures with reference to competition and succession in pastures. In: Tow PG, Lazenby A (eds) Competition and succession in pastures. CABI, Wallingford, UK, pp 149–174
    34. Heinrich B (1976) Flowering phenologies: bog, woodland, and disturbed habitats. Ecology 57:890–899
    35. Klimešov谩 J, Klimeš L (2006) CLO-PLA3: a database of clonal growth architecture of Central European plants. http://clopla.butbn.cas.cz and http://clopla.butbn.cas.cz/. Accessed 20 March 2011
    36. Klotz S, K眉hn I, Durka W (2002) Biolflor: Eine Datenbank zu biologisch-枚kologischen Merkmalen der Gef盲脽pflanzen in Deutschland. Schriftenreihe f眉r Vegetationskunde 38. Bonn, Bundesamt f眉r Naturschutz. http://www.ufz.de/biolflor/index.jsp. Accessed 20 March 2011
    37. Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revising the Holy Grail. Funct Ecol 16:545–556
    38. Lavorel S, D铆az S, Cornelissen JHC, Garnier E, Harrison SP, McIntyre S, Pausas JG, P茅rez-Harguindeguy N, Roumet C, Urcelay C (2007) Plant functional types: are we getting any closer to the Holy Grail? In: Canadell J, Pitelka LF, Pataki D (eds) Terrestrial ecosystems in a changing world. The IGBP series. Springer, New York, pp 171–186
    39. Legendre P, Legendre L (1998) Numerical ecology. 2nd English ed. Elsevier, Amsterdam, NL, p 853
    40. Losvik MH (1991) A hay meadow in western Norway changes in course of a growing season. Nord J Bot 11:577–586
    41. Mart铆nkov谩 J, Šmilauer P, Mihulka S (2002) Phenological pattern of grassland species: relation to the ecological and morphological traits. Flora 197:290–302
    42. McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software Design, Gleneden Beach, Oregon 300 pp
    43. McCune B, Mefford MJ (2006) PC-ORD. Multivariate analysis of ecological data. Version 5. MjM Software Design. Gleneden Beach, Oregon
    44. McMaster GS, Wilhelm W (1997) Growing degree-days: one equation, two interpretations. Agric For Meteorol 87:291–300
    45. Moles AT, Westoby M (2006) Seed size and plant strategy across the whole life cycle. Oikos 113:91–105
    46. Moles AT, Hodson DW, Webb CJ (2000) Seed size and shape and persistence in the soil in the New Zealand flora. Oikos 89:541–545
    47. Moles AT, Falster DS, Leishman MR et al (2004) Small-seeded species produce more seeds per square metre of canopy per year, but not per individual per lifetime. J Ecol 92:384–396
    48. Oksanen J, Guillaume Blanchet F, Kindt R, Legendre P, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2011) Vegan: community ecology package v. 1.17–9. http://CRAN.R-project.org/package=vegan. Accessed 10 April 2011
    49. Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614–2625
    50. Pieruccini P (2007) Suoli e geomorfologia delle praterie montane dell’Appennino Umbro-Marchigiano. In: Catorci A, Gatti R (eds) Le praterie montane dell’Appennino maceratese. Braun-Blanquetia 42:19–36
    51. Pignatti S (1982) Flora d’Italia. Voll. 1–3. Bologna, Edagricole, p 2302
    52. Poole RW, Rathcke BJ (1979) Regularity, randomness, and aggregation in flowering phenologies. Science 203:470–471
    53. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org. Accessed 20 March 2011
    54. Rathcke B, Lacey EP (1985) Phenological patterns of terrestrial plants. Annu Rev Ecol Syst 16:179–214
    55. Rivas-Mart铆nez S, Rivas-Saenz S (1996–2009) Worldwide Bioclimatic Classification System, Phytosociological Research Center, Spain. http://www.globalbioclimatics.org. Accessed 20 March 2011
    56. Roff DA (2002) Life history evolution. Sinauer, Sunderland, MA 527 pp
    57. Schmid B (1986) Spatial dynamics and integration within clones of grassland perennials with different growth form. Proc Roy Soc London Ser B, Biol Sci 228:173–186
    58. SPSS Inc. (1997) SPSS for Windows. Version 8.0, Chicago, USA
    59. Sun S, Frelich LE (2011) Flowering phenology and height growth pattern are associated with maximum plant height, relative growth rate and stem tissue mass density in herbaceous grassland species. J Ecol 99:991–1000
    60. Thomson K, Band SR, Hodgson JG (1993) Seed size and shape predict persistence in soil. Funct Ecol 7:236–241
    61. Tissue DT, Nobel PS (1988) Parent-ramet connections in Agave desert: influences of carbohydrates on growth. Oecologia 75:266–271
    62. van Calster H, Hendels P, Antonio K, Verheyen K, Hermy M (2008) Coppice management effects on experimentally established populations of three herbaceous layer woodland species. Biol Conserv 141:2641–2652
    63. Vile D, Shipley B, Garnier E (2006) A structural equation model to integrate changes in functional strategies during old-field succession. Ecology 87:504–517
    64. Weiher E, van der Werf A, Thompson K, Roderick M, Garnier E, Eriksson O (1999) Challenging Theophrastus: a common core list of plant traits for functional ecology. J Veg Sci 10:609–620
    65. Whalley RDB, Hardy MB (2000) Measuring botanical composition of grasslands. In: Jones RM (ed) Field and laboratory methods for grassland and animal production research. Oxford University Press, USA, pp 67–102
  • 作者单位:1. School of Environmental Sciences, University of Camerino, Via Pontoni 5, 62032 Camerino (MC), Italy
  • ISSN:1573-5052
文摘
The research aims were to identify the flowering pattern and the related functional strategies in submediterranean mountain meadows (central Italy) and understand their relationships with some environmental and community structure variables. The number of flowering shoots per species was counted and environmental data were collected in 40 plots during 2009. Analysis of the species and trait data sets highlighted a flowering pattern and an underlying functional pattern. Dominant species tend to bloom in the central phases of the growing season when no stress acts in the system and a long time is available for plant growth and seed maturation. This kind of species does not need functional strategies allowing the canopy fast pre-emption or the tolerance to drought stress. Non-dominant species have two groups of functional strategies that allow them to share the same flowering period of dominant ones by a different type of space occupation (spatial niche partitioning) or to flower before or after their flowering period (temporal niche partitioning). The functional strategies involved in the temporal niche partitioning have a dual ecological meaning, limiting competition with dominant species by fast growth and seed maturation (e.g., short stature, mobilisation of stored reserves, colonization of unexploited soil niches by clonal growth organs and light seeds) and enabling tolerance to drought stress (e.g., scleromorphic and succulent leaves, persistent green leaves, tap roots) and to the low light availability at the ground level owing to the change of grassland structure (e.g., tall size and upright growth form).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700