Cyclodidepsipeptides with a promising scaffold in medicinal chemistry
详细信息    查看全文
  • 作者:Andrija Smelcerovic (1)
    Predrag Dzodic (2)
    Voja Pavlovic (3)
    Emiliya Cherneva (4)
    Denitsa Yancheva (5)
  • 关键词:Biological activities ; Cyclodidepsipeptides ; Docking ; Drug ; likeness ; Structure–activity relationships ; Synthesis
  • 刊名:Amino Acids
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:46
  • 期:4
  • 页码:825-840
  • 全文大小:752 KB
  • 参考文献:1. Abe M, Yamano T, Yamatodani S, Kozu Y, Kosumoto M, Komatsu H, Yamada S (1959) On the new peptide-type ergot alkaloids, ergosecaline and ergosecalinine. Bull Agric Chem Soc Jpn 23:246-48 CrossRef
    2. Arcelli A, Balducci D, Grandi A, Porzi G, Sandri M, Sandri S (2004) Chiral 1,4-morpholine-2,5-diones. Synthesis and evaluation as glucosidase inhibitors. Monatsh Chem 135:951-58 CrossRef
    3. Arcelli A, Balducci D, Grandi A, Porzi G, Sandri M, Sandri S (2005) Chiral 1,4-morpholin-2,5-dione derivatives as α-glucosidase inhibitors: part 2. Tetrahedron Asymmetry 16:1495-501 CrossRef
    4. Arcelli A, Balducci D, Neto SFE, Porzi G, Sandri M (2007) Synthesis of new chiral 1,4-morpholin-2,5-dione derivatives and evaluation as α-glucosidase inhibitors. Part 3. Tetrahedron Asymmetry 18:562-68 CrossRef
    5. Bagavananthem Andavan GS, Lemmens-Gruber R (2010) Cyclodepsipeptides from marine sponges: natural agents for drug research. Mar Drugs 8:810-34 CrossRef
    6. Bolte M, Egert E (1994) A 2,5-diketomorpholine. Acta Crystallogr C50:1117-118
    7. Chisholm MH, Galucci J, Krempner C, Wiggenhorn C (2006) Comments on the ring-opening polymerization of morpholine-2,5-dione derivatives by various metal catalysts and characterization of the products formed in the reactions involving R2SnX2, where X?=?OPri and NMe2 and R?=?Bun, Ph and p-Me2NC6H4. Dalton Trans 6:846-51 CrossRef
    8. Clarke SJ, McStay GP, Halestrap AP (2002) Sanglifehrin A acts as a potent inhibitor of the mitochondrial permeability transition and reperfusion injury of the heart by binding to cyclophilin-d at a different site from cyclosporin A. J Biol Chem 277:34793-4799 CrossRef
    9. Molinspiration Cheminformatics (2013) http://www.molinspiration.com; Molinspiration property engine v2013.09
    10. Cook AH, Cox SF (1949) 2:5-Diketomorpholines, their synthesis and stability. J Chem Soc 2347-351
    11. Ertl P, Rodhe B, Selzer P (2000) Fast calculation of molecular polar surface areas as a sum of fragment-based contribution and its application to the prediction of drug transport properties. J Med Chem 43:3714-717 CrossRef
    12. Feng Y, Guo J (2009) Biodegradable polydepsipeptides. Int J Mol Sci 10:589-15 CrossRef
    13. Gura T (1998) Uncoupling proteins provide new clue to obesity’s causes. Science 280:1369-370 CrossRef
    14. Hamada Y, Shioiri T (2005) Recent progress of the synthetic studies of biologically active marine cyclic peptides and depsipeptides. Chem Rev 105:4441-482 CrossRef
    15. Hanessian S, Wang J, Montgomery D, Stoll V, Stewart KD, Kati W, Maring C, Kempf D, Hutchins C, Laver WG (2002) Design, synthesis, and neuraminidase inhibitory activity of GS-4071 analogues that utilize a novel hydrophobic paradigm. Bioorgan Med Chem Lett 12:3425-429 CrossRef
    16. Hasumi K, Shinohara C, Iwanaga T, Endo A (1993) Lateritin, a new inhibitor of acyl-CoA:cholesterol acyltransferase produced by / Gibberella lateritium IFO 7188. J Antibiot 46:1782-787 CrossRef
    17. Hornbogen T, Glinski M, Zocher R (2002) Biosynthesis of depsipeptide mycotoxins in / Fusarium. Eur J Plant Pathol 108:713-18 CrossRef
    18. Hughes AB, Sleebs MM (2005) Total synthesis of bassiatin and its stereoisomers: novel divergent behavior of substrates in Mitsunobu cyclizations. J Org Chem 70:3079-088 CrossRef
    19. Iijima M, Masuda T, Nakamura H, Naganawa H, Kurasawa S, Okami Y, Ishizuka M, Takeuchi T, Iitaka Y (1992) Metacytofilin, a novel immunomodulator produced by / Metharizium sp. TA2759. J Antibiot 45:1553-556 CrossRef
    20. In ‘t Veld PJA, Dijkstra PJ, van Lochem JH, Feijen J (1990) Synthesis of alternating polydepsipeptides by ring-opening polymerization of morpholine-2,5-dione derivatives. Makromol Chem 191:1813-825 CrossRef
    21. J?rres V, Keul H, H?cker H (1998) Aminolysis of α-hydroxy acid esters with α-amino acid salts; first step in the synthesis of optically active 2,5-morpholinediones. Macromol Chem Phys 199:825-33
    22. Kagamizono T, Nishino E, Matsumoto K, Kawashima A, Kishimoto M, Sakai N, He BM, Chen ZX, Adachi T, Morimoto S, Hanada K (1995) Bassiatin, a new platelet aggregation inhibitor produced by / Beauveria bassiana K-717. J Antibiot 48:1407-412 CrossRef
    23. Kuang Y–Y, Huo M, Chen F-E (2004) 3-Bromomethyl-3-ethyl-3,4,6,7,8,8a-hexahydro-1H-pyrrolo-[2,1-c][1,4]oxazine-1,4-dione. Acta Crystallogr C60:o505–o506
    24. Kumar V, Abbas AK, Fausto N, Aster J (2010) Robbins and Cotran pathologic basis of disease, 8th edn. Saunders Elsevier, Philadelphia, p 500
    25. Kuo Y-C, Lin L-C, Don M-J, Liao H-F, Tsai Y-p, Lee G-H, Chou C-J (2002) Cyclodesipeptide and dioxomorpholine derivatives isolated from the insect-body portion of the fungus / Cordyceps cicadae. J Chin Med 13:209-19
    26. Lemmens-Gruber R, Kamyar MR, Dornetshuber R (2009) Cyclodepsipeptides- potential drugs and lead compounds in the drug development process. Curr Med Chem 16:1122-137 CrossRef
    27. Lillelund VH, Jensen HH, Liang X, Bols M (2002) Recent developments of transition-state analogue glycosidase inhibitors of non-natural product origin. Chem Rev 102:515-53 CrossRef
    28. Linden A, Ghorbani-Salman Pour F, Breitenmoser RA, Heimgartner H (2001) (±)-6-Benzyl-3,3-dimethylmorpholine-2,5-dione and its 5-monothio and 2,5-dithio derivatives. Acta Crystallogr C57:634-37
    29. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2012) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 64:4-7 CrossRef
    30. Martínez-Palau M, Urpí L, Solans X, Puiggalí J (2006) Morpholine-2,5-dione. Acta Crystallogr C62:o262–o264
    31. Mawad N, Ghorbani-Salman Pour F, Linden A, Heimgartner H (2010) Synthesis and crystal structure of 3,3,6,6-tetramethylmorpholine-2,5-dione, and its 5-monothioxo and 2,5-dithioxo derivatives. Helv Chim Acta 93:2326-346 CrossRef
    32. Pavlovic V, Djordjevic A, Cherneva E, Yancheva D, Smelcerovic A (2012a) Stimulatory effect on rat thymocytes proliferation and antimicrobial activity of two 6-(propan-2-yl)-4-methyl-morpholine-2,5-diones. Food Chem Toxicol 50:761-66 CrossRef
    33. Pavlovic V, Cherneva E, Yancheva D, Smelcerovic A (2012b) 6-(Propan-2-yl)-3-methyl-morpholine-2,5-dione, a novel cyclodidepsipeptide with modulatory effect on rat thymocytes. Food Chem Toxicol 50:3014-018 CrossRef
    34. Pedras MSC, Chumala PB, Quail JW (2004) Chemical mediators: the remarkable structure and host-selectivity of depsilairdin, a sesquiterpenic depsipeptide containing a new amino acid. Org Lett 6:4615-617 CrossRef
    35. Porzi G, Sandri S (1996) Enantioselective synthesis of (R)- and (S)-α-aminoacids using (6S)- and (6R)-6-methyl-morpholine-2,5-dione derivatives. Tetrahedron Asymmetry 7:189-96 CrossRef
    36. Prasanna S, Doerksen RJ (2009) Topological polar surface area: a useful descriptor in 2DQSAR. Curr Med Chem 16:21-1 CrossRef
    37. Sarabia F, Chammaa S, Sanchez Ruiz A, Martin Ortiz L, Lopez Herrera FJ (2004) Chemistry and biology of cyclic depsipeptides of medicinal and biological interest. Curr Med Chem 11:1309-332 CrossRef
    38. Smelcerovic A, Yancheva D, Cherneva E, Petronijevic Z, Lamshoeft M, Herebian D (2011) Identification and synthesis of three cyclodidepsipeptides as potential precursors of enniatin B in Fusarium sporotrichioides. J Mol Struct 985:397-02 CrossRef
    39. Smelcerovic A, Rangelov M, Smelcerovic Z, Veljkovic A, Cherneva E, Yancheva D, Nikolic GM, Petronijevic Z, Kocic G (2013) Two 6-(propan-2-yl)-4-methyl-morpholine-2,5-diones as new non-purine xanthine oxidase inhibitors and anti-inflammatory agents. Food Chem Toxicol 55:493-97 CrossRef
    40. Stankov-Jovanovic V, Tabet JC, Dzodic P, Daskalova L, Cherneva E, Yancheva D, Smelcerovic A (2012) In vitro antioxidant activity of two 6-(propan-2-yl)-4-methyl-morpholine-2,5-diones. Acta Chim Slov 59:939-43
    41. Stolze SC, Kaiser M (2013) Case studies of the synthesis of bioactive cyclodepsipeptide natural products. Molecules 18:1337-367 CrossRef
    42. Suntornchashwej S, Chaichit N, Isobe M, Suwanborirux K (2005) Hectochlorin and morpholine derivatives from the Thai sea hare, / Bursatella leachii. J Nat Prod 68:951-55 CrossRef
    43. Szardenings AK, Burkoth TS, Lu HH, Tien DW, Campbell DA (1997) A simple procedure for the solid phase synthesis of diketopiperazine and diketomorpholine derivatives. Tetrahedron 53:6573-593 CrossRef
    44. Tomoda H, Huang XH, Cao J, Nishida H, Nagao R, Okuda S, Tanaka H, Omura S, Arai H, Inoue K (1992) Inhibition of acyl-CoA:cholesterol acyltransferase activity by cyclodepsipeptide antibiotics. J Antibiot 45:1626-632 CrossRef
    45. Veber DF, Johnson SR, Cheng H-Y, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615-623 CrossRef
    46. Vinsova J (2001) Morpholine-2,5-diones—their preparation and exploitation. Chem Listy 95:22-7
    47. Wang J-C, Chu P-Y, Chen C-M, Lin J-H (2012) IdTarget: a web server for identifying protein targets of small chemical molecules with robust scoring functions and a divide-and-conquer docking approach. Nucleic Acids Res 40(Web Server issue):W393–W399 CrossRef
    48. Woolley DW, Schaffner G, Braun AC (1955) Studies on the structure of the phytopathogenic toxin of / Pseudomonas tabaci. J Biol Chem 215:485-93
    49. Yancheva Pantaleeva D, Rangelov M, Smelcerovic Z, Cherneva E, Smelcerovic A, Petronijevic Z, Kocic G (2013) Molecular interactions of 6-(propan-2-yl)-3-methyl-morpholine-2,5-dione to bovine xanthine oxidase as determined by molecular modeling. In: Book of abstracts of the European UGM and conference 2013, Amsterdam, 5 2013
    50. Yancheva D, Daskalova L, Cherneva E, Mikhova B, Djordjevic A, Smelcerovic Z, Smelcerovic A (2012) Synthesis, structure and antimicrobial activity of 6-(propan-2-yl)-3-methyl-morpholine-2,5-dione. J Mol Struct 1016:147-54 CrossRef
    51. Zhukhlistova NE, Tishchenko GN (1980) Cтpyктypнoe иccлeдoбaниe цикличecкиx дипeптидoв и дидeпcипeптидoв. III. Утoчнeниe кpиcтaлличecкoи cтpyктpы цикличecкoгo дидeпcипeптидa мeтилвaлилoкcиизoвaлepилa. Kristallografiya 25:274-79
  • 作者单位:Andrija Smelcerovic (1)
    Predrag Dzodic (2)
    Voja Pavlovic (3)
    Emiliya Cherneva (4)
    Denitsa Yancheva (5)

    1. Department of Chemistry, Faculty of Medicine, University of Nis, Bulevar Dr Zorana Djindjica 81, 18000, Nis, Serbia
    2. Department of Pharmacy, Faculty of Medicine, University of Nis, Bulevar Dr Zorana Djindjica 81, 18000, Nis, Serbia
    3. Faculty of Medicine, Institute of Physiology, University of Nis, Bulevar Dr Zorana Djindjica 81, 18000, Nis, Serbia
    4. Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000, Sofia, Bulgaria
    5. Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Build. 9, 1113, Sofia, Bulgaria
  • ISSN:1438-2199
文摘
Among the large family of cyclodepsipeptides, the simplest members are the cyclodidepsipeptides which have an ester group and an amide group in the same six-membered ring. To point out the pharmacological potential of this class of compounds, the present article reviews structure, isolation, synthesis and biological properties of the known cyclodidepsipeptides. Synthesis of cyclodidepsipeptides is achieved by two general approaches—by initial formation of the amide bond, or initial formation of the ester bond; and subsequent intermolecular cyclization to cyclodidepsipeptide structure. It is closely related to the condensation and ring-closure strategies applied in the preparation of the larger members of the cyclodepsipeptide family. However, due to synthesis of the smaller heretocycles it allows for the use of more versatile building blocks. There are data on antimicrobial, antioxidant and immunomodulatory activities of cyclodidepsipeptides as well as their inhibitory activities toward α-glucosidase, acyl-CoA:cholesterol acyltransferase, xanthine oxidase and platelet aggregation. Because we have recently found that two 6-(propan-2-yl)-4-methyl-morpholine-2,5-diones, as novel non-purine xanthine oxidase inhibitors, may give promise to be used in the treatment of gout, in this review we have included a study of molecular interactions of the selected cyclodidepsipeptides with xanthine oxidase using idTarget web server. Cyclodidepsipeptides showed promising pharmacological activities and meet all criteria for good solubility and permeability. However, further research of their medical application is necessary. In addition to this, the diversity of natural cyclodidepsipeptides, simplicity for synthesis and convenience for rational drug design indicate the cyclodidepsipeptide as promising scaffold in medicinal chemistry.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700