Computational benchmark for calculation of silane and siloxane thermochemistry
详细信息    查看全文
  • 作者:Marek Cypryk ; Bartłomiej Gostyński
  • 关键词:Siloxane bond ; Chlorosilane hydrolysis ; Silanol condensation ; Thermodynamics ; Density functional methods
  • 刊名:Journal of Molecular Modeling
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:22
  • 期:1
  • 全文大小:1,770 KB
  • 参考文献:1.Cordero B, Gomez V, Platero-Prats AE, Reves M, Echeverria J, Cremades E, Barragan F, Alvarez S (2008) Covalent radii revisited. Dalton Trans 21:2832–2838. doi:10.​1039/​B801115J CrossRef
    2.Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32(5):751–767, see also http://​www.​webelements.​com
    3.Grigoras S (1992) In: Bicerano J (ed) Modeling of polydimethylsiloxane. Dekker, New York, pp 161–190
    4.Gibbs GV, Downs JW, Boisen MB Jr (1994) The elusive SiO bond. Rev Mineral Geochem 29:331–368
    5.Gibbs GV, Downs RT, Cox DF, Ross NL, Prewitt CT, Rosso KM, Lippmann T, Kirfel A (2008) Bonded interactions and the crystal chemistry of minerals: a review. Z Kristallogr 223:1–40. doi:10.​1524/​zkri.​2008.​0002 CrossRef
    6.Gillespie RJ, Robinson EA (2005) Models of molecular geometry. Chem Soc Rev 34(5):396–407. doi:10.​1039/​B405359C CrossRef
    7.Oberhammer H, Boggs JE (1980) Importance of (p-d)π bonding in the siloxane bond. J Am Chem Soc 102(24):7241–7244. doi:10.​1021/​ja00544a011 CrossRef
    8.Harrison WA (1978) Is silicon dioxide covalent or ionic? In: Pantelides ST (ed) The physics of SiO2 and its Interfaces. Pergamon, London, p 105
    9.Stewart RF, Whitehead MA, Donnay G (1980) The ionicity of the Si-O bond in low quartz. Am Mineral 65:324–326
    10.Gibbs GV, Rosso KM, Teter DM, Boisen MB Jr, Bukowinski MST (1999) Model structures and properties of the electron density distribution for low quartz at pressure: a study of the SiO bond. J Mol Struct 485–486:13–25. doi:10.​1016/​S0022-2860(99)00179-9 CrossRef
    11.Pauling L (1980) The nature of silicon-oxygen bonds. Am Mineral 65:321–323
    12.Pauling L (1960) The nature of the chemical bond. Cornell University Press, Ithaca
    13.Almenningen A, Bastiansen O, Ewing V, Hedberg K, Trætteberg M (1963) The molecular structure of disiloxane, (SiH3)2O. Acta Chem Scand 17:2455–2460. doi:10.​3891/​acta.​chem.​scand.​17-2455 CrossRef
    14.Ebsworth EAV (1968) Organometallic compounds of the group IV elements. Dekker, York New
    15.Voronkov MG, Mileshkevich VP, Yuzhelevskii YA (1978) The siloxane bond. Plenum, New York
    16.Apeloig Y (1989) Theoretical aspects of organosilicon compounds. In: Patai S, Rappoport Z (eds) The chemistry of organic silicon compounds, vol 1. Wiley, Chichester, pp 57–227CrossRef
    17.Cypryk M, Chojnowski J (2002) Silanones and metasilicates from negatively charged equivalent to SiO(−) and = SiO2 (2−) precursors. Theoretical study. J Organomet Chem 642(1–2):163–170CrossRef
    18.Weinhold F, West R (2011) The nature of the silicon–oxygen bond. Organometallics 30(21):5815–5824. doi:10.​1021/​om200675d CrossRef
    19.Weinhold F, West R (2013) Hyperconjugative interactions in permethylated siloxanes and ethers: the nature of the SiO bond. J Am Chem Soc 135:5762–5767. doi:10.​1021/​ja312222k CrossRef
    20.Cypryk M, Apeloig Y (1997) Ab initio study of silyloxonium ions. Organometallics 16(26):5938–5949CrossRef
    21.Walsh R (1989) Thermochemistry. In: Patai S, Rappoport Z (eds) The chemistry of organic silicon compounds, vol 1. Wiley, Chichester, pp 371–392CrossRef
    22.Chojnowski J, Cypryk M (2000) Synthesis of linear polysiloxanes. In: Jones RG, Ando W, Chojnowski J (eds) Silicon-containing polymers, the science and technology of their synthesis and applications, vol 1. Kluwer, Dordrecht, pp 3–41
    23.Cypryk M (2007) In: DeJaeger R, Gleria M (eds) General Review on Polysiloxane Synthesis, vol 1. NOVA, New York, pp 1–59
    24.Ring MA, O’Neal HE, Kadhim AH, Jappe F (1966) Heats of formation of chlorosilanes. J Organomet Chem 5:124–129CrossRef
    25.Sousa SF, Fernandes PA, Ramos MJ (2007) General performance of density functionals. J Phys Chem A 111:10439–10452CrossRef
    26.Becke AD (1993) Density-functional thermochemistry. III The role of exact exchange. J Chem Phys 98(7):5648–5652CrossRef
    27.Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron gas correlation energy. Phys Rev B 45:13244–13249CrossRef
    28.Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRef
    29.Zhao Y, Schultz NE, Truhlar DG (2006) Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J Chem Theory Comput 2(2):364–382CrossRef
    30.Zhao Y, Truhlar DG (2008) Density functionals with broad applicability in chemistry. Acc Chem Res 41(2):157–167. doi:10.​1021/​ar700111a CrossRef
    31.Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys 125:194101–194118. doi:10.​1063/​1.​2370993 CrossRef
    32.Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57. doi:10.​1016/​j.​cplett.​2004.​06.​011 CrossRef
    33.Tsuneda T, Hirao K (2014) Long-range correction for density functional theory. WIREs Comput Mol Sci 4(4):375–390. doi:10.​1002/​wcms.​1178 CrossRef
    34.Grimme S (2011) Density functional theory with London dispersion corrections. WIREs Comput Mol Sci 1(2):211–228. doi:10.​1002/​wcms.​30 CrossRef
    35.Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10(44):6615–6620CrossRef
    36.Swart M, Solà M, Bickelhaupt FM (2011) Inter- and intramolecular dispersion interactions. J Comput Chem 32(6):1117–1127. doi:10.​1002/​jcc.​21693 CrossRef
    37.Song J-W, Tsuneda T, Sato T, Hirao K (2010) Calculations of alkane energies using long-range corrected DFT combined with intramolecular van der waals correlation. Org Lett 12(7):1440–1443. doi:10.​1021/​ol100082z CrossRef
    38.Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650. doi:10.​1063/​1.​438955 CrossRef
    39.Rassolov VA, Ratner M, Pople JA, Redfern PC, Curtiss LA (2001) 6-31G* basis set for third-row atoms. J Comput Chem 22(9):976–984CrossRef
    40.Lynch BJ, Zhao Y, Truhlar DG (2003) Effectiveness of diffuse basis functions for calculating relative energies by density functional theory. J Phys Chem A 107(9):1384–1388, http://comp.chem.umn.edu/basissets/basis.cgi CrossRef
    41.Johnson ER, Contreras-García J, Yang W (2012) Density-functional errors in alkanes: a real-space perspective. J Chem Theory Comput 8:2676–2681. doi:10.​1021/​ct300412g CrossRef
    42.Tielens F, De Proft F, Geerlings P (2001) Density functional theory study of the conformation and energetics of silanol and disiloxane. J Mol Struct Theochem 542:227–237CrossRef
    43.Carteret C, Labrosse A, Assfeld X (2007) An ab initio and DFT study of structure and vibrational spectra of disiloxane H3SiOSiH3 conformers. Comparison to experimental data. Spectrochim Acta A 67:1421–1429. doi:10.​1016/​j.​saa.​2006.​10.​041 CrossRef
    44.Zhang Y, Li ZH, Truhlar DG (2007) Computational requirements for simulating the structures and proton activity of silicaceous materials. J Chem Theory Comput 3(2):593–604. doi:10.​1021/​ct6002884 CrossRef
    45.Al Derzi AR, Gregušová A, Runge K, Bartlett RJ (2008) Structure and properties of disiloxane: an ab initio and post-Hartree–Fock study. Int J Quantum Chem 108(12):2088–2096. doi:10.​1002/​qua.​21720 CrossRef
    46.Scuseria GE (1992) Comparison of coupled-cluster results with a hybrid of Hartree–Fock and density functional theory. J Chem Phys 97(10):7528–7530CrossRef
    47.Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA (1999) A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J Chem Phys 110(6):2822–2827. doi:10.​1063/​1.​477924 CrossRef
    48.Martin JML, de Oliveira G (1999) Towards standard methods for benchmark quality ab initio thermochemistry—W1 and W2 theory. J Chem Phys 111(5):1843–1856CrossRef
    49.Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao ON, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S., Tomasi J, Cossi M, Rega N, Millam MJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox D (2009) Gaussian 09, Revision D.01. vol D.01. Gaussian, Inc., Wallingford CT
    50.Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24(6):669–681CrossRef
    51.Barrow MJ, Ebsworth EAV, Harding MM (1979) The crystal and molecular structures of disiloxane (at 108 K) and hexamethyldisiloxane (at 148 K). Acta Crystallogr B 35(9):2093–2099. doi:10.​1107/​S056774087900852​9 CrossRef
    52.Borisenko KB, Rozsondai B, Hargittai I (1997) Molecular structure and intramolecular motion of hexamethyldisiloxane from gas-phase electron diffraction. J Mol Struct 406(1–2):137–144. doi:10.​1016/​S0022-2860(96)09609-3 CrossRef
    53.Smith JS, Borodin O, Smith GD (2004) A quantum chemistry based force field for poly(dimethylsiloxane). J Phys Chem B 108(52):20340–20350CrossRef
    54.Koput J (1995) An ab initio study on the potential energy surface of large-amplitude motions for disiloxane. J Phys Chem 99(43):15874–15880. doi:10.​1021/​j100043a028 CrossRef
    55.Carteret C, Labrosse A (2010) Vibrational properties of polysiloxanes: from dimer to oligomers and polymers. 1. Structural and vibrational properties of hexamethyldisiloxane (CH3)3SiOSi(CH3)3. J Raman Spectrosc 41(9):996–1004. doi:10.​1002/​jrs.​2537 CrossRef
    56.Passmore J, Rautiainen JM (2012) On the lower lewis basicity of siloxanes compared to ethers. Eur J Inorg Chem 2012(36):6002–6010. doi:10.​1002/​ejic.​201200881 CrossRef
    57.Koput J (2000) The equilibrium structure and torsional potential energy function of methanol and silanol. J Phys Chem A 104(44):10017–10022CrossRef
    58.Minkwitz R, Schneider S (1998) Die tieftemperaturkristallstruktur von trimethylsilanol (the low temperature crystal structure of trimethylsilanol). Z Naturforsch B Chem Sci 53(4):426–429CrossRef
    59.Kewley R, McKinney PM, Robiette AG (1970) The microwave spectra and molecular structures of the silyl halides. J Mol Spectrosc 34(3):390–398. doi:10.​1016/​0022-2852(70)90022-6 CrossRef
    60.Merke I, Stahl W, Kassi S, Petitprez D, Wlodarczak G (2002) Internal rotation, quadrupole coupling, and structure of (CH3)3SiCl studied by microwave spectroscopy and ab initio calculation. J Mol Spectrosc 216(2):437–446. doi:10.​1006/​jmsp.​2002.​8632 CrossRef
    61.Iijima T, Shimoda T, Hattori H (1995) Molecular structure of chlorotrimethylsilane and methyltrichlorosilane as investigated by gas-phase electron diffraction. J Mol Struct 350(1):57–61. doi:10.​1016/​0022-2860(94)08466-U CrossRef
    62.Montejo M, Partal Ureña F, Márquez F, Ignatyev IS, González JJL (2005) Vibrational spectrum of chlorotrimethylsilane. Spectrochim Acta A 62(1–3):293–301. doi:10.​1016/​j.​saa.​2004.​12.​04232 CrossRef
    63.CRC (2007) Handbook of Chemistry and Physics, 87th edn. Taylor and Francis, Boca Raton, FL
    64.Hunter EPL, Lias SG (1998) Evaluated gas phase basicities and proton affinities of molecules: an update. J Phys Chem Ref Data 27(3):413–656CrossRef
    65.Pedley JB, Iseard BS, Kirk A, Seilman S, Heath LG (1972) Computer analysis of thermochemical data: silicon compounds. CATCH tables. Sussex University, Brighton
    66.Rimarčik J, Lukeš V, Klein E, Ilčin M (2010) Study of the solvent effect on the enthalpies of homolytic and heterolytic N–H bond cleavage in p-phenylenediamine and tetracyano-p-phenylenediamine. Theochem 952:25–30. doi:10.​1016/​j.​theochem.​2010.​04.​002 CrossRef
    67.West R, Wilson LS, Powell DL (1979) Basicity of siloxanes, alkoxysilanes and ethers toward hydrogen bonding. J Organomet Chem 178(1):5–9. doi:10.​1016/​S0022-328X(00)87856-0 CrossRef
    68.Grabowsky S, Hesse MF, Paulmann C, Luger P, Beckmann J (2009) How to make the ionic Si-O bond more covalent and the Si-O-Si linkage a better acceptor for hydrogen bonding. Inorg Chem 48(10):4384–4393. doi:10.​1021/​ic900074r CrossRef
    69.Mejías JA, Lago S (2000) Calculation of the absolute hydration enthalpy and free energy of H+ and OH−. J Chem Phys 113(17):7306. doi:10.​1063/​1.​1313793 CrossRef
    70.Camaioni DM, Schwerdtfeger CA (2005) Comment on “Accurate experimental values for the free energies of hydration of H+, OH−, and H3O+”. J Phys Chem A 109(47):10795–10797CrossRef
    71.Ignatyev IS, Montejo M, López González JJ (2013) An assessment of DFT methods for predicting the thermochemistry of ion-molecule reactions of group 14 elements (Si, Ge, Sn). J Mol Model 19:5439–5444. doi:10.​1007/​s00894-013-2038-y CrossRef
  • 作者单位:Marek Cypryk (1)
    Bartłomiej Gostyński (1)

    1. Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Computer Applications in Chemistry
    Biomedicine
    Molecular Medicine
    Health Informatics and Administration
    Life Sciences
    Computer Application in Life Sciences
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:0948-5023
文摘
Geometries of model chlorosilanes, R3SiCl, silanols, R3SiOH, and disiloxanes, (R3Si)2O, R = H, Me, as well as the thermochemistry of the reactions involving these species were modeled using 11 common density functionals in combination with five basis sets to examine the accuracy and applicability of various theoretical methods in organosilicon chemistry. As the model reactions, the proton affinities of silanols and siloxanes, hydrolysis of chlorosilanes and condensation of silanols to siloxanes were considered. As the reference values, experimental bonding parameters and reaction enthalpies were used wherever available. Where there are no experimental data, W1 and CBS-QB3 values were used instead. For the gas phase conditions, excellent agreement between theoretical CBS-QB3 and W1 and experimental thermochemical values was observed. All DFT methods also give acceptable values and the precision of various functionals used was comparable. No significant advantage of newer more advanced functionals over ‘classical’ B3LYP and PBEPBE ones was noted. The accuracy of the results was improved significantly when triple-zeta basis sets were used for energy calculations, instead of double-zeta ones. The accuracy of calculations for the reactions in water solution within the SCRF model was inferior compared to the gas phase. However, by careful estimation of corrections to the ΔHsolv and ΔGsolv of H+ and HCl, reasonable values of thermodynamic quantities for the discussed reactions can be obtained.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700