Up-regulation of liver Pcsk9 gene expression as a possible cause of hypercholesterolemia in experimental chronic renal failure
详细信息    查看全文
  • 作者:Elzbieta Sucajtys-Szulc ; Marek Szolkiewicz…
  • 关键词:PCSK9 ; SREBF ; 2 ; LDL ; LDL ; R ; Hypercholesterolemia ; CRF
  • 刊名:Molecular and Cellular Biochemistry
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:411
  • 期:1-2
  • 页码:281-287
  • 全文大小:582 KB
  • 参考文献:1.Oda H, Keane WF (1998) Lipid abnormalities in end stage renal disease. Nephrol Dial Transplant 13(Suppl 1):45–49CrossRef PubMed
    2.Sun L, Halaihel N, Zhang W, Rogers T, Levi M (2002) Role of sterol regulatory element-binding protein 1 in regulation of renal lipid metabolism and glomerulosclerosis in diabetes mellitus. J Biol Chem 277:18919–18927CrossRef PubMed
    3.Szolkiewicz M, Sucajtys E, Chmielewski M, Wolyniec W, Rutkowski P, Boguslawski W, Swierczynski J, Rutkowski B (2002) Increased rate of cholesterologenesis—a possible cause of hypercholesterolemia in experimental chronic renal failure in rats. Horm Metab Res 34:234–237CrossRef PubMed
    4.Chmielewski M, Sucajtys E, Swierczynski J, Rutkowski B, Bogusławski W (2003) Contribution of increased Hmg-CoA reductase gene expression to hypercholesterolemia in experimental chronic renal failure. Mol Cell Biochem 246:187–191CrossRef PubMed
    5.Chmielewski M, Sucajtys-Szulc E, Kossowska E, Swierczynski J, Rutkowski B, Boguslawski W (2007) Increased gene expression of liver Srebp-2 in experimental chronic renal failure. Atherosclerosis 191:326–332CrossRef PubMed
    6.Lopez D (2008) PCSK9: an enigmatic protease. Biochim Biophys Acta 1781:184–191CrossRef PubMed
    7.Lambert G, Charlton F, Rye KA, Piper DE (2009) Molecular basis of PCSK9 function. Atherosclerosis 203:1–7CrossRef PubMed
    8.Lambert G, Sjouke B, Choque B, Kastelein J, Hovingh GK (2012) The PCSK9 decade. J Lipid Res 53:2515–2524PubMedCentral CrossRef PubMed
    9.Stein EA, Swergold GDP (2013) Potential of proprotein convertase subtilisin/kexin type 9 based therapeutics. Curr Atheroscler Rep 15:310. doi:10.​1007/​s11883-013-0310-3 CrossRef PubMed
    10.Seidah NG, Benjannet S, Wickham L, Marcinkiewicz J, Jasmin SB, Stifani S, Basak A, Prat A, Chretien M (2003) The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc Natl Acad Sci USA 100:928–933PubMedCentral CrossRef PubMed
    11.Seidah NG, Prat A (2007) The proprotein convertases are potential targets in the treatment of dyslipidemia. J Mol Med (Berl) 85:685–696CrossRef
    12.Urban D, Poss J, Bohm M, Laufs U (2013) Targeting the proprotein convertase subtilisin/kexin type 9 for the treatment of dyslipidemia and atherosclerosis. J Am Coll Cardiol 62:1401–1408CrossRef PubMed
    13.Rashid S, Curtis DE, Garuti R, Anderson NN, Bashmakov Y, Ho YK, Hammer RE, Moon YA, Horton JD (2005) Decreased plasma cholesterol and hypersensitivity to statins in mice lacking PCSK9. Proc Natl Acad Sci USA 102:5374–5379PubMedCentral CrossRef PubMed
    14.Zaid A, Roubtsova A, Essalmani R, Marcinkiewicz J, Chamberland A, Hamelin J, Tremblay M, Jacques H, Jin W, Davignon J, Seidah NG, Prat A (2008) Proprotein convertase subtilisin/kexin type 9 (PCSK9): hepatocyte-specific low-density lipoprotein receptor degradation and critical role in mouse liver regeneration. Hepatology 48:646–654CrossRef PubMed
    15.Alborn WE, Cao G, Careskey HE, Qian YW, Qian YW, Subramaniam DR, Davies J, Conner EM, Konrad RJ (2007) Serum proprotein convertase subtilisin kexin type 9 is correlated directly with serum LDL cholesterol. Clin Chem 53:1814–1819CrossRef PubMed
    16.Lee ChJ, LeeY-ho Parc SW, Kim KJ, Park S, Youn J-Ch, LeeS-H Kang S-M, Jang Y (2013) Association of serum proprotein convertase subtilisin/kexin type 9 with carotid intima media thickness in hypertensive subjects. Metabolism 62:845–850CrossRef PubMed
    17.Blom DJ, Hala T, Bolognese M, Lillestol MJ, Toth PD, Burgess L, Ceska R, Roth E, Koren MJ, Ballantyne CM, Monsalvo ML, Tsirtsonis K, Kim JB, Scott R, Wasserman SM, Stein EA (2014) DESCARTES investigators: a 52-week placebo-controlled trial of evolocumab in hyperlipidemia. N Engl J Med 370:1809–1819CrossRef PubMed
    18.Jin K, Park BS, Kim YW, Vaziri ND (2014) Plasma PCSK9 in nephrotic syndrome and in peritoneal dialysis: a cross-sectional study. Am J Kidney Dis 63:584–589CrossRef PubMed
    19.Liu S, Vaziri ND (2014) Role of PCSK9 and IDOL in the pathogenesis of acquired LDL receptor deficiency and hypercholesterolemia in nephrotic syndrome. Nephrol Dial Transplant 29:538–543CrossRef PubMed
    20.Konarzewski M, Szolkiewicz M, Sucajtys-Szulc E, Blaszak J, Lizakowski S, Swierczynski J, Rutkowski B (2014) Elevated circulating PCSK-9 concentration in renal failure patients is corrected by renal replacement therapy. Am J Nephrol 40:157–163CrossRef PubMed
    21.Jeong HJ, Lee HS, Kim KS, Kim YK, Yoon D, Park SW (2008) Sterol-dependent regulation of proprotein convertase subtilisin/kexin type 9 expression by sterol-regulatory element binding protein-2. J Lipid Res 49:399–409CrossRef PubMed
    22.Costet P, Cariou B, Lambert G, Lalanne F, Lardeux B, Jarnoux AL, Grefhorst A, Staels B, Krempf M (2006) Hepatic PCSK9 expression is regulated by nutritional status via insulin and sterol regulatory element-binding protein 1c. J Biol Chem 281:6211–6218CrossRef PubMed
    23.Swierczynski J, Korczynska J, Szolkiewicz M, Karbowska J, Kochan Z, Nieweglowski T, Kusiak E, Rutkowski B (2001) Low leptin mRNA level in adipose tissue and normoleptinemia in experimental chronic renal failure. Exp Nephrol 9:54–59CrossRef PubMed
    24.Turyn J, Stojek M, Swierczynski J (2010) Up-regulation of stearol-CoA desaturase 1 and elongase 6 genes expression in rat lipogenic tissues by chronic food restriction and chronic food restriction/refeeding. Mol Cell Biochem 345:181–188CrossRef PubMed
    25.Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159CrossRef PubMed
    26.Winer J, Jung CK, Shackel I, Williams PM (1999) Development and validation of real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro. Anal Biochem 270:41–49CrossRef PubMed
    27.Roubtsova A, Munkonda MN, Awan Z, Marcinkiewicz J, Chamberland A, Lazure C, Cianflone K, Seidah NG, Prat A (2011) Circulating proprotein convertase subtilisin/kexin 9 (PCSK9) regulates VLDLR protein and triglyceride accumulation in visceral adipose tissue. Arterioscler Thromb Vasc Biol 31:785–791CrossRef PubMed
    28.Kwakernaak AJ, Lambert G, Slagman MC, Waanders F, Laverman GD, Petrides F, Dikkeschei BD, Navis G, Dullaart RP (2013) Proprotein convertase subtilisin-kexin type 9 is elevated in proteinuric subjects: relationship with lipoprotein response to antiproteinuric treatment. Atherosclerosis. 226:459–465CrossRef PubMed
  • 作者单位:Elzbieta Sucajtys-Szulc (1)
    Marek Szolkiewicz (1)
    Julian Swierczynski (2)
    Boleslaw Rutkowski (1)

    1. Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdansk, ul. Debinki 7, 80-211, Gdańsk, Poland
    2. Department of Biochemistry, Medical University of Gdansk, ul. Debinki 1, 80-211, Gdańsk, Poland
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Biochemistry
    Medical Biochemistry
    Oncology
    Cardiology
  • 出版者:Springer Netherlands
  • ISSN:1573-4919
文摘
Dyslipidemia commonly present in patients with chronic kidney disease (CKD) has been recently linked to increased proprotein convertase subtilisin/kexin type 9 (PCSK9) serum concentration. We tested a hypothesis that increased liver PCSK9 biosynthesis could be partially responsible for the elevated circulating PCSK9 level, and subsequently contribute to hypercholesterolemia observed in subjects with CKD. Rat model of chronic renal failure (CRF) was used in the study. Animals underwent a 5/6 nephrectomy or a sham operation. Liver expression of Pcsk9, sterol regulatory element-binding transcription factor 2 (Srebf-2), and β-actin were quantified by real-time RT-PCR. Liver protein levels of PCSK9, LDL-receptor (LDL-R), and SREBF-2 were analyzed using Western blotting. Serum PCSK9 concentration was estimated by immunoassay. Rats with an experimental CRF as compared to pair-fed and control ones were characterized by: (a) an up-regulation of liver Pcsk9 and Srebf-2 genes expression with parallel increase of serum PCSK9 concentration; (b) a decrease in liver LDL-R protein level, and (c) an increase of serum total and LDL-cholesterol concentrations. We also found significant correlations between serum creatinine and liver PCSK9 mRNA levels (r = 0.88, p < 0.001) and between serum creatinine and circulating PCSK9 levels (r = 0.73, p < 0.001). The results suggest that a rat model of CRF is associated with an increased liver Pcsk9 gene expression. The coordinated up-regulation of Pcsk9 and Srebf-2 genes expression suggests that SREBF-2 may play a key role in regulation of Pcsk9 gene expression, circulating PCSK9 level, and hypercholesterolemia in experimental CRF. Keywords PCSK9 SREBF-2 LDL LDL-R Hypercholesterolemia CRF

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700