The use of yellow fluorescent hybrids to indicate mating in Trypanosoma brucei
详细信息    查看全文
  • 作者:Wendy Gibson (1)
    Lori Peacock (1) (2)
    Vanessa Ferris (1) (2)
    Katherine Williams (1)
    Mick Bailey (2)
  • 刊名:Parasites & Vectors
  • 出版年:2008
  • 出版时间:December 2008
  • 年:2008
  • 卷:1
  • 期:1
  • 全文大小:3226KB
  • 参考文献:1. Adl SM, Simpson AGB, Farmer MA, Andersen RA, Anderson OR, Barta JR, Browser SS, Brugerolle G, Fensome RA, Fredericq S, James TY, Karpov S, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn DH, Mann DG, McCourt RM, Mendoza L, Moestrup O, Mozley-Standridge SE, Nerad TA, Shearer CA, Smirnov AV, Spiegel FW, Taylor M: The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. / J Eukaryot Microbiol 2005, 52 (5) : 399鈥?51. CrossRef
    2. Jenni L, Marti S, Schweizer J, Betschart B, Lepage RWF, Wells JM, Tait A, Paindavoine P, Pays E, Steinert M: Hybrid formation between African trypanosomes during cyclical transmission. / Nature 1986, 322: 173鈥?75. CrossRef
    3. Gaunt MW, Yeo M, Frame IA, Stothard JR, Carrasco HJ, Taylor MC, Mena SS, Veazey P, Miles GAJ, Acosta N, de Arias AR, Miles MA: Mechanism of genetic exchange in American trypanosomes. / Nature 2003, 421 (6926) : 936鈥?39. CrossRef
    4. Tibayrenc M, Kjellberg F, Ayala FJ: A clonal theory of parasitic protozoa: The population structures of Entamoeba , Giardia , Leishmania , Naegleria , Plasmodium , Trichomonas and Trypanosoma and their medical and taxonomical consequences. / Proc Natl Acad Sci U S A 1990, 87: 2414鈥?418. CrossRef
    5. Gibson W, Stevens J: Genetic exchange in the Trypanosomatidae. / Adv Parasitol 1999, 43: 1鈥?6. CrossRef
    6. Baldauf SL, Roger AJ, Wenk-Siefert I, Doolittle WF: A kingdom-level phylogeny of eukaryotes based on combined protein data. / Science 2000, 290 (5493) : 972鈥?77. CrossRef
    7. Schweizer J, Tait A, Jenni L: The timing and frequency of hybrid formation in African trypanosomes during cyclical transmission. / Parasitol Res 1988, 75: 98鈥?01. CrossRef
    8. Aksoy S, Gibson W, Lehane MJ: Interactions between tsetse and trypanosomes with implications for the control of trypanosomiasis. / Adv Parasitol 2003, 53: 1鈥?3. CrossRef
    9. Sharma R, Peacock L, Gluenz E, Gull K, Gibson W, Carrington M: Asymmetric cell division as a route to reduction in cell length and change in cell morphology in trypanosomes. / Protist 2007., doi:10.1016/j.protis.2007.07.004:
    10. Gibson W, Bailey M: Genetic exchange in Trypanosoma brucei : evidence for meiosis from analysis of a cross between drug resistant transformants. / Mol Biochem Parasitol 1994, 64: 241鈥?52. CrossRef
    11. Gibson W, Winters K, Mizen G, Kearns J, Bailey M: Intraclonal mating in Trypanosoma brucei is associated with out-crossing. / Microbiology UK 1997, 143: 909鈥?20. CrossRef
    12. Van den Abbeele J, Claes Y, Van Bockstaele D, Le Ray D, Coosemans M: Trypanosoma brucei spp. development in the tsetse fly: characterization of the post-mesocyclic stages in the foregut and proboscis. / Parasitology 1999, 118: 469鈥?78. CrossRef
    13. Paindavoine P, Zampetti-Bosseler F, Pays E, Schweizer J, Guyaux M, Jenni L, Steinert M: Trypanosome hybrids generated in tsetse flies by nuclear fusion. / EMBO J 1986, 5: 3631鈥?636.
    14. Sternberg J, Tait A, Haley S, Wells JM, Lepage RWF, Schweizer J, Jenni L: Gene exchange in African trypanosomes: characterisation of a new hybrid genotype. / Mol Biochem Parasitol 1988, 27: 191鈥?00. CrossRef
    15. Sternberg J, Turner CMR, Wells JM, Ranford-Cartwright LC, Lepage RWF, Tait A: Gene exchange in African trypanosomes: frequency and allelic segregation. / Mol Biochem Parasitol 1989, 34: 269鈥?80. CrossRef
    16. Turner CMR, Sternberg J, Buchanan N, Smith E, Hide G, Tait A: Evidence that the mechanism of gene exchange in Trypanosoma brucei involves meiosis and syngamy. / Parasitology 1990, 101: 377鈥?86. CrossRef
    17. Gibson WC: Analysis of a genetic cross between Trypanosoma brucei rhodesiense and T. b. brucei. / Parasitology 1989, 99: 391鈥?02. CrossRef
    18. MacLeod A, Tweedie A, McLellan S, Taylor S, Cooper A, Sweeney L, Turner CMR, Tait A: Allelic segregation and independent assortment in Trypanosoma brucei crosses: Proof that the genetic system is Mendelian and involves meiosis. / Mol Biochem Parasitol 2005, 143 (1) : 12鈥?9. CrossRef
    19. Shapiro SZ, Naessens J, Liesegang B, Moloo SK, Magondu J: Analysis by flow cytometry of DNA synthesis during the life cycle of African trypanosomes. / Acta Trop 1984, 41: 313鈥?23.
    20. Tait A, Turner CMR, Le Page RFW, Wells JM: Genetic evidence that metacyclic forms of Trypanosoma brucei are diploid. / Mol Biochem Parasitol 1989, 37: 247鈥?56. CrossRef
    21. Wells JM, Prospero TD, Jenni L, Le Page RWF: DNA contents and molecular karyotypes of hybrid Trypanosoma brucei . / Mol Biochem Parasitol 1987, 24: 103鈥?16. CrossRef
    22. Gibson W, Garside L, Bailey M: Trisomy and chromosome size changes in hybrid trypanosomes from a genetic cross between Trypanosoma brucei rhodesiense and T. b. brucei . / Mol Biochem Parasitol 1992, 52: 189鈥?00. CrossRef
    23. Hope M, MacLeod A, Leech V, Melville S, Sasse J, Tait A, Turner CMR: Analysis of ploidy (in megabase chromosomes) in Trypanosoma brucei after genetic exchange. / Mol Biochem Parasitol 1999, 104 (1) : 1鈥?. CrossRef
    24. Gibson W, Garside L: Kinetoplast DNA mini-circles are inherited from both parents in genetic hybrids of Trypanosoma brucei . / Mol Biochem Parasitol 1990, 42: 45鈥?4. CrossRef
    25. Turner CMR, Hide G, Buchanan N, Tait A: Trypanosoma brucei - inheritance of kinetoplast DNA maxicircles in a genetic cross and their segregation during vegetative growth. / Exp Parasitol 1995, 80: 234鈥?41. CrossRef
    26. Gibson W, Crow M, Kearns J: Kinetoplast DNA minicircles are inherited from both parents in genetic crosses of Trypanosoma brucei . / Parasitol Res 1997, 83: 483鈥?88. CrossRef
    27. Gibson W: The significance of genetic exchange in trypanosomes. / Parasitol Today 1995, 11: 465鈥?68. CrossRef
    28. Ramesh MA, Malik SB, Logsdon JM: A phylogenomic inventory of meiotic genes: Evidence for sex in Giardia and an early eukaryotic origin of meiosis. / Curr Biol 2005, 15 (2) : 185鈥?91.
    29. Bingle LEH, Eastlake JL, Bailey M, Gibson WC: A novel GFP approach for the analysis of genetic exchange in trypanosomes allowing the in situ detection of mating events. / Microbiology-Sgm 2001, 147: 3231鈥?240.
    30. Gibson W, Peacock L, Ferris V, Williams K, Bailey M: Analysis of a cross between green and red fluorescent trypanosomes. / Biochem Soc Trans 2006, 34: 557鈥?59. CrossRef
    31. Peacock L, Ferris V, Bailey M, Gibson W: Dynamics of infection and competition between two strains of Trypanosoma brucei brucei in the tsetse fly observed using fluorescent markers. / Kinetoplastid Biology and Disease 2007, 6: 4. CrossRef
    32. Lewis EA, Langridge WP: Developmental forms of Trypanosoma brucei in the "saliva" of Glossina pallidipes and G. austeni. / Ann Trop Med Parasitol 1947, 41: 6鈥?3.
    33. Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H, Bartholomeu DC, Lennard NJ, Caler E, Hamlin NE, Haas B, Bohme W, Hannick L, Aslett MA, Shallom J, Marcello L, Hou LH, Wickstead B, Alsmark UCM, Arrowsmith C, Atkin RJ, Barron AJ, Bringaud F, Brooks K, Carrington M, Cherevach I, Chillingworth TJ, Churcher C, Clark LN, Corton CH, Cronin A, Davies RM, Doggett J, Djikeng A, Feldblyum T, Field MC, Fraser A, Goodhead I, Hance Z, Harper D, Harris BR, Hauser H, Hostetter J, Ivens A, Jagels K, Johnson D, Johnson J, Jones K, Kerhornou AX, Koo H, Larke N, Landfear S, Larkin C, Leech V, Line A, Lord A, MacLeod A, Mooney PJ, Moule S, Martin DMA, Morgan GW, Mungall K, Norbertczak H, Ormond D, Pai G, Peacock CS, Peterson J, Quail MA, Rabbinowitsch E, Rajandream MA, Reitter C, Salzberg SL, Sanders M, Schobel S, Sharp S, Simmonds M, Simpson AJ, Talton L, Turner CMR, Tait A, Tivey AR, Van Aken S, Walker D, Wanless D, Wang SL, White B, White O, Whitehead S, Woodward J, Wortman J, Adams MD, Embley TM, Gull K, Ullu E, Barry JD, Fairlamb AH, Opperdoes F, Barret BG, Donelson JE, Hall N, Fraser CM, Melville SE, El-Sayed NM: The genome of the African trypanosome Trypanosoma brucei . / Science 2005, 309 (5733) : 416鈥?22. CrossRef
    34. GeneDB: . [http://www.geneDB.org]
    35. Gluenz E, Shaw MK, Gull K: Structural asymmetry and discrete nucleic acid subdomains in the Trypanosoma brucei kinetoplast. / Mol Microbiol 2007, 64 (6) : 1529鈥?539. CrossRef
    36. Bennett RJ, Johnson AD: Completion of a parasexual cycle in Candida albicans by induced chromosome loss in tetraploid strains. / EMBO J 2003, 22: 2505鈥?515. CrossRef
    37. Otto SP: The evolutionary consequences of polyploidy. / Cell 2007, 131: 452鈥?62. CrossRef
    38. Dvorak JA, Hall TE, Crane MSJ, Engel JC, McDaniel JP, Uriegas R: Trypanosoma cruzi : flow cytometric analysis. I. Analysis of total DNA/organism by means of mithramycin-induced fluorescence. / J Protozool 1982, 29: 430鈥?37.
    39. McDaniel JP, Dvorak JA: Identification, isolation and characterization of naturally-occurring Trypanosoma cruzi variants. / Mol Biochem Parasitol 1993, 57: 213鈥?22. CrossRef
    40. Kanmogne GD, Bailey M, Gibson W: Wide variation in DNA content among isolates of Trypanosoma brucei ssp. / Acta Trop 1997, 63: 75鈥?7. CrossRef
    41. Jackson AP: Evolutionary consequences of a large duplication event in Trypanosoma brucei : Chomosomes 4 and 8 are partial duplicons. / BMC Genomics 2007, 8: 432. CrossRef
    42. Campbell RE, Tour O, Palmer AE, Steinbach PA, Baird GS, Zacharias DA, Tsien RY: A monomeric red fluorescent protein. / Proc Natl Acad Sci U S A 2002, 99: 7877鈥?882. CrossRef
    43. Gibson WC, Marshall TFC, Godfrey DG: Numerical analysis of enzyme polymorphism: a new approach to the epidemiology and taxonomy of trypanosomes of the subgenus Trypanozoon . / Adv Parasitol 1980, 18: 175鈥?46. CrossRef
    44. Gibson WC, Fase-Fowler F, Borst P: Further analysis of intraspecific variation in Trypanosoma brucei using restriction site polymorphisms in the maxi-circle of kinetoplast DNA. / Mol Biochem Parasitol 1985, 15: 21鈥?6. CrossRef
    45. Cunningham I: New culture medium for maintenance of tsetse tissues and growth of trypanosomatids. / J Protozool 1977, 24: 325鈥?29.
    46. Peacock L, Ferris V, Bailey M, Gibson W: Multiple effects of the lectin-inhibitory sugars D-glucosamine and N-acetyl-glucosamine on tsetse-trypanosome interactions. / Parasitology 2006, 132: 651鈥?58. CrossRef
    47. Kabayo JP: The nature of the nutritional importance of serum-albumin to Glossina morsitans . / J Insect Physiol 1982, 28: 917鈥?23. CrossRef
    48. Galun R, Margalit J: Adenine nucleotides as feeding stimulants of tsetse fly Glossina austeni Newst. / Nature 1969, 222 (5193) : 583鈥?84. CrossRef
    49. Van der Ploeg LHT, Schwartz DC, Cantor CR, Borst P: Antigenic variation in Trypanosoma brucei analysed by electrophoretic separation of chromosome-sized DNA molecules. / Cell 1984, 37: 77鈥?4. CrossRef
    50. Southern EM: Detection of specific sequences among DNA fragments separated by gel electrophoresis. / J Mol Biol 1975, 98: 503鈥?17. CrossRef
    51. Gibson WC, Dukes P, Gashumba JK: Species-specific DNA probes for the identification of trypanosomes in tsetse. / Parasitology 1988, 97: 63鈥?3. CrossRef
    52. Thomashow LS, Milhausen M, Rutter M, Agabian N: Tubulin genes are tandemly linked and clustered in the genome of Trypanosoma brucei . / Cell 1983, 32: 35鈥?3. CrossRef
  • 作者单位:Wendy Gibson (1)
    Lori Peacock (1) (2)
    Vanessa Ferris (1) (2)
    Katherine Williams (1)
    Mick Bailey (2)

    1. School of Biological Sciences University of Bristol, BS8 1UG, Bristol, UK
    2. Department of Clinical Veterinary Science, University of Bristol, Langford, Bristol, BS40 7DU, UK
文摘
Background Trypanosoma brucei undergoes genetic exchange in its insect vector, the tsetse fly, by an unknown mechanism. The difficulties of working with this experimental system of genetic exchange have hampered investigation, particularly because the trypanosome life cycle stages involved cannot be cultured in vitro and therefore must be examined in the insect. Searching for small numbers of hybrid trypanosomes directly in the fly has become possible through the incorporation of fluorescent reporter genes, and we have previously carried out a successful cross using a reporter-repressor strategy. However, we could not be certain that all fluorescent trypanosomes observed in that cross were hybrids, due to mutations of the repressor leading to spontaneous fluorescence, and we have therefore developed an alternative strategy. Results To visualize the production of hybrids in the fly, parental trypanosome clones were transfected with a gene encoding Green Fluorescent Protein (GFP) or Red Fluorescent Protein (RFP). Co-infection of flies with red and green fluorescent parental trypanosomes produced yellow fluorescent hybrids, which were easily visualized in the fly salivary glands. Yellow trypanosomes were not seen in midgut or proventricular samples and first appeared in the glands as epimastigotes as early as 13 days after fly infection. Cloned progeny originating from individual salivary glands had yellow, red, green or no fluorescence and were confirmed as hybrids by microsatellite, molecular karyotype and kinetoplast (mitochondrial) DNA analyses. Hybrid clones showed biparental inheritance of both nuclear and kinetoplast genomes. While segregation and reassortment of the reporter genes and microsatellite alleles were consistent with Mendelian inheritance, flow cytometry measurement of DNA content revealed both diploid and polyploid trypanosomes among the hybrid progeny clones. Conclusion The strategy of using production of yellow hybrids to indicate mating in trypanosomes provides a robust and unequivocal system for analysis of genetic exchange. Mating occurred with high frequency in these experimental crosses, limited only by the ability of both parental trypanosomes to invade the salivary glands. Yellow hybrids appeared as soon as trypanosomes invaded the salivary glands, implicating the short, unattached epimastigote as the sexual stage. The recovery of diploid, triploid and tetraploid hybrids in these crosses was surprising as genetic markers appeared to have been inherited according to Mendelian rules. As the polyploid hybrids could have been produced from fusion of unreduced gametes, there is no fundamental conflict with a model of genetic exchange involving meiosis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700