Independent component and pathway-based analysis of miRNA-regulated gene expression in a model of type 1 diabetes
详细信息    查看全文
  • 作者:Claus H Bang-Berthelsen (1) (2)
    Lykke Pedersen (3)
    Tina Fl?yel (1) (2)
    Peter H Hagedorn (4) (7)
    Titus Gylvin (5)
    Flemming Pociot (1) (2) (6)
  • 刊名:BMC Genomics
  • 出版年:2011
  • 出版时间:December 2011
  • 年:2011
  • 卷:12
  • 期:1
  • 全文大小:798KB
  • 参考文献:1. Saito T, S?trom P: MicroRNAs - targeting and target prediction. / New Biotechnology 2010,27(3):243-49. CrossRef
    2. Sood P, Krek A, Zavolan M, Macino G, Rajewsky N: Cell-type-specific signatures of microRNAs on target mRNA expression. / PNAS 2006,103(8):2746-751. CrossRef
    3. Huang JC, Babak T, Corson TW, Chua G, Khan S, Gallie BL, Hughes TR, Blencowe BJ, Frey BJ, Morris QD: Using expression profiling data to identify human microRNA targets. / Nat Methods 2007,4(12):1045-049. CrossRef
    4. Dongen Sv, Abreu-Goodger C, Enright AJ: Detecting microRNA binding and siRNA off-target effects from expression data. / Nat Methods 2008,5(12):1023-025. CrossRef
    5. Cheng C, Li LM: Inferring microRNA activities by combining gene expression with microRNA target prediction. / PLoS ONE 2008,3(4):e1989. CrossRef
    6. Perou CM, S?rlie T, Eisen MB, Rijn Mvd, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, / et al.: Molecular portraits of human breast tumours. / Nature 2000,406(6797):747-52. CrossRef
    7. Arbeitman MN, Furlong EEM, Imam F, Johnson E, Null BH, Baker BS, Krasnow MA, Scott MP, Davis RW, White KP: Gene expression during the life cycle of Drosophila melanogaster. / Science 2002,297(5590):2270-275. CrossRef
    8. Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Sch?lkopf B, Weigel D, Lohmann JU: A gene expression map of Arabidopsis thaliana development. / Nat Genet 2005,37(5):501-06. CrossRef
    9. Ohlsson Teague EMC, Van der Hoek KH, Van der Hoek MB, Perry N, Wagaarachchi P, Robertson SA, Print CG, Hull LM: MicroRNA-Regulated Pathways Associated with Endometriosis. / Mol Endocrinol 2009,23(2):265-75. CrossRef
    10. Comon P: Independent component analysis, A new concept? / Signal Processing 1994, 36:287-14. CrossRef
    11. Martoglio AM, Miskin JW, Smith SK, MacKay DJC: A decomposition model to track gene expression signatures: preview on observer-independent classification of ovarian cancer. / Bioinformatics 2002,18(12):1617-624. CrossRef
    12. Chiappetta P, Roubaud MC, Torrésani B: Blind source separation and the analysis of microarray data. / J Comput Biol 2004,11(6):1090-109. CrossRef
    13. Saidi SA, Holland CM, Kreil DP, MacKay DJC, Charnock-Jones DS, Print CG, Smith SK: Independent component analysis of microarray data in the study of endometrial cancer. / Oncogene 2004,23(39):6677-683. CrossRef
    14. Capobianco E: Mining time-dependent gene features. / J Bioinform Comput Biol 2005,3(5):1191-205. CrossRef
    15. Lutter D, Ugocsai P, Grandl M, Orso E, Theis F, Lang E, Schmitz G: Analyzing M-CSF dependent monocyte/macrophage differentiation: expression modes and meta-modes derived from an independent component analysis. / BMC Bioinformatics 2008,9(1):100. CrossRef
    16. Liebermeister W: Linear modes of gene expression determined by independent component analysis. / Bioinformatics 2002,18(1):51-0. CrossRef
    17. Lee SI, Batzoglou S: Application of independent component analysis to microarrays. / Genome Biol 2003,4(11):R76. CrossRef
    18. Carpentier AS, Riva A, Tisseur P, Didier G, Hénaut A: The operons, a criterion to compare the reliability of transcriptome analysis tools: ICA is more reliable than ANOVA, PLS and PCA. / Comput Biol Chem 2004,28(1):3-0. CrossRef
    19. Teschendorff AE, Journée M, Absil PA, Sepulchre R, Caldas C: Elucidating the altered transcriptional programs in breast cancer using independent component analysis. / PLoS Comput Biol 2007,3(8):e161. CrossRef
    20. Frigyesi A, Veerla S, Lindgren D, H?glund M: Independent component analysis reveals new and biologically significant structures in micro array data. / BMC Bioinformatics 2006, 7:290. CrossRef
    21. Eizirik DL, Flodstrom M, Karlsen AE, Welsh N: The harmony of the spheres: inducible nitric oxide synthase and related genes in pancreatic beta cells. / Diabetologia 1996,39(8):875-90. CrossRef
    22. Lynn FC, Skewes-Cox P, Kosaka Y, McManus MT, Harfe BD, German MS: MicroRNA expression is required for pancreatic islet cell genesis in the mouse. / Diabetes 2007,56(12):2938-945. CrossRef
    23. Bernardo AS, Hay CW, Docherty K: Pancreatic transcription factors and their role in the birth, life and survival of the pancreatic beta cell. / Mol Cell Endocrinol 2008,294(1-):1-. CrossRef
    24. Jonsson J, Carlsson L, Edlund T, Edlund H: Insulin-promoter-factor 1 is required for pancreas development in mice. / Nature 1994,371(6498):606-09. CrossRef
    25. Offield MF, Jetton TL, Labosky PA, Ray M, Stein RW, Magnuson MA, Hogan BL, Wright CV: PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. / Development 1996,122(3):983-95.
    26. Stoffers DA, Zinkin NT, Stanojevic V, Clarke WL, Habener JF: Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. / Nat Genet 1997,15(1):106-10. CrossRef
    27. Ohlsson H, Karlsson K, Edlund T: IPF1, a homeodomain-containing transactivator of the insulin gene. / EMBO J 1993,12(11):4251-259.
    28. Wang H, Maechler P, Ritz-Laser B, Hagenfeldt KA, Ishihara H, Philippe J, Wollheim CB: Pdx1 level defines pancreatic gene expression pattern and cell lineage differentiation. / J Biol Chem 2001,267(27):25279-5286. CrossRef
    29. Nielsen K, Karlsen AE, Deckert M, Madsen OD, Serup P, Mandrup-Poulsen T, Nerup J: Beta-cell maturation leads to in vitro sensitivity to cytotoxins. / Diabetes 1999,48(12):2324-332. CrossRef
    30. Nielsen K, Kruh?ffer M, Orntoft T, Sparre T, Wang H, Wollheim C, J?rgensen MC, Nerup J, Karlsen AE: Gene expression profiles during beta cell maturation and after IL-1beta exposure reveal important roles of Pdx-1 and Nkx6.1 for IL-1beta sensitivity. / Diabetologia 2004,47(12):2185-199. CrossRef
    31. Nielsen K, Sparre T, Larsen MR, Nielsen M, Fey SJ, Mose Larsen P, Roepstorff P, Nerup J, Karlsen AE: Protein expression changes in a cell system of beta-cell maturation reflect an acquired sensitivity to IL-1beta. / Diabetologia 2004,47(1):62-4. CrossRef
    32. Keller DM, McWeeney S, Arsenlis A, Drouin J, Wright CV, Wang H, Wollheim CB, White P, Kaestner KH, Goodman RH: Characterization of pancreatic transcription factor Pdx-1 binding sites using promoter microarray and serial analysis of chromatin occupancy. / J Biol Chem 2007,282(44):32084-2092. CrossRef
    33. Baroukh N, Ravier MA, Loder MK, Hill EV, Bounacer A, Scharfmann R, Rutter GA, Van Obberghen E: MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic beta-cell lines. / J Biol Chem 2007,282(27):19575-9588. CrossRef
    34. Joglekar MV, Parekh VS, Hardikar AA: New pancreas from old: microregulators of pancreas regeneration. / Trends Endocrinol Metab 2007,18(10):393-00. CrossRef
    35. Joglekar MV, Joglekar VM, Hardikar AA: Expression of islet-specific microRNAs during human pancreatic development. / Gene Expr Patterns 2009,9(2):109-13. CrossRef
    36. Correa-Medina M, Bravo-Egana V, Rosero S, Ricordi C, Edlund H, Diez J, Pastori RL: MicroRNA miR-7 is preferentially expressed in endocrine cells of the developing and adult human pancreas. / Gene Expr Patterns 2009,9(4):193-99. CrossRef
    37. Galbo T, Pedersen I, Floyel T, Bang-Berthelsen C, Serup P, Madsen O, Hald J: Novel monoclonal antibodies against Pdx1 reveal feedback regulation of Pdx1 protein levels. / European Journal of Histochemistry 2010, 54:e19.
    38. Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M: KEGG for representation and analysis of molecular networks involving diseases and drugs. / Nucleic Acids Res 2010, (38 Database):D355-60.
    39. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstrale M, Laurila E, / et al.: PGC-1[alpha]-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. / Nat Genet 2003,34(3):267-73. CrossRef
    40. Gurzov EN, Germano CM, Cunha DA, Ortis F, Vanderwinden JM, Marchetti P, Zhang L, Eizirik DL: p53 up-regulated modulator of apoptosis (PUMA) activation contributes to pancreatic beta-cell apoptosis induced by proinflammatory cytokines and endoplasmic reticulum stress. / J Biol Chem 2010,285(26):19910-9920. CrossRef
    41. Cardozo AK, Kruhoffer M, Leeman R, Orntoft T, Eizirik DL: Identification of novel cytokine-induced genes in pancreatic beta-cells by high-density oligonucleotide arrays. / Diabetes 2001,50(5):909-20. CrossRef
    42. Kutlu B, Cardozo AK, Darville MI, Kruhoffer M, Magnusson N, Orntoft T, Eizirik DL: Discovery of gene networks regulating cytokine-induced dysfunction and apoptosis in insulin-producing INS-1 cells. / Diabetes 2003,52(11):2701-719. CrossRef
    43. Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, Piedade Id, Gunsalus KC, Stoffel M, / et al.: Combinatorial microRNA target predictions. / Nat Genet 2005,37(5):495-00. CrossRef
    44. Dews M, Homayouni A, Yu D, Murphy D, Sevignani C, Wentzel E, Furth EE, Lee WM, Enders GH, Mendell JT, / et al.: Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. / Nat Genet 2006,38(9):1060-065. CrossRef
    45. Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P, / et al.: A pancreatic islet-specific microRNA regulates insulin secretion. / Nature 2004,432(7014):226-30. CrossRef
    46. Poy MN, Hausser J, Trajkovski M, Braun M, Collins S, Rorsman P, Zavolan M, Stoffel M: miR-375 maintains normal pancreatic alpha- and beta-cell mass. / Proc Natl Acad Sci USA 2009,106(14):5813-818. CrossRef
    47. Roldo C, Missiaglia E, Hagan JP, Falconi M, Capelli P, Bersani S, Calin GA, Volinia S, Liu CG, Scarpa A, / et al.: MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. / J Clin Oncol 2006,24(29):4677-684. CrossRef
    48. Avnit-Sagi T, Kantorovich L, Kredo-Russo S, Hornstein E, Walker MD: The promoter of the pri-miR-375 gene directs expression selectively to the endocrine pancreas. / PLoS One 2009,4(4):e5033. CrossRef
    49. Tang X, Gal J, Zhuang X, Wang W, Zhu H, Tang G: A simple array platform for microRNA analysis and its application in mouse tissues. / RNA 2007,13(10):1803-822. CrossRef
    50. Hino K, Tsuchiya K, Fukao T, Kiga K, Okamoto R, Kanai T, Watanabe M: Inducible expression of microRNA-194 is regulated by HNF-1alpha during intestinal epithelial cell differentiation. / RNA 2008,14(7):1433-442. CrossRef
    51. Adlakha Y, Saini N: MicroRNA-128 downregulates Bax and induces apoptosis in human embryonic kidney cells. / Cellular and Molecular Life Sciences 2010, 1-4.
    52. Chen K, Rajewsky N: The evolution of gene regulation by transcription factors and microRNAs. / Nat Rev Genet 2007,8(2):93-03. CrossRef
    53. Tsang J, Zhu J, van Oudenaarden A: MicroRNA-Mediated Feedback and Feedforward Loops Are Recurrent Network Motifs in Mammals. / Molecular Cell 2007,26(5):753-67. CrossRef
    54. Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. / Methods 2001,25(4):402-08. CrossRef
    55. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP: Summaries of Affymetrix GeneChip probe level data. / Nucleic Acids Res 2003,31(4):e15. CrossRef
    56. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, / et al.: Bioconductor: open software development for computational biology and bioinformatics. / Genome Biol 2004,5(10):R80. CrossRef
    57. Dai M, Wang P, Boyd AD, Kostov G, Athey B, Jones EG, Bunney WE, Myers RM, Speed TP, Akil H, / et al.: Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. / Nucleic Acids Res 2005,33(20):e175. CrossRef
    58. Smedley D, Haider S, Ballester B, Holland R, London D, Thorisson G, Kasprzyk A: BioMart--biological queries made easy. / BMC Genomics 2009, 10:22. CrossRef
    59. Griffiths-Jones S, Saini HK, Dongen Sv, Enright AJ: miRBase: tools for microRNA genomics. / Nucleic Acids Res 2008, (36 Database):D154-D158.
    60. Chang WC: On Using Principal Components Before Separating a Mixture of Two Multivariate Normal Distributions. / Appl Statist 1983,32(3):267-75. CrossRef
    61. Yeung KY, Ruzzo WL: Principal component analysis for clustering gene expression data. / Bioinformatics 2001,17(9):763-74. CrossRef
    62. Hyv?rinen A, Oja E: Independent component analysis: algorithms and applications. / Neural Netw 2000,13(4-):411-30. CrossRef
    63. Hyv?rinen A: Fast and Robust Fixed-Point algorithms for Independent Component Analysis. / IEEE Trans on Neural Networks 1999,10(3):626-34. CrossRef
  • 作者单位:Claus H Bang-Berthelsen (1) (2)
    Lykke Pedersen (3)
    Tina Fl?yel (1) (2)
    Peter H Hagedorn (4) (7)
    Titus Gylvin (5)
    Flemming Pociot (1) (2) (6)

    1. Glostrup Research Institute, Glostrup University Hospital, DK-2600, Glostrup, Denmark
    2. Hagedorn Research Institute, Niels Steensensvej 6, DK-2820, Gentofte, Denmark
    3. Center for Models of Life, University of Copenhagen, Blegdamsvej 17, DK-2100, Copenhagen, Denmark
    4. Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, DK-2800, Lyngby, Denmark
    7. Department of Molecular Biomedicine, LEO Pharma A/S, Industriparken 55, DK-2750, Ballerup, Denmark
    5. Steno Diabetes Center, Niels Steensensvej 2, DK-2820, Gentofte, Denmark
    6. University of Lund, CRC, Sk?ne University Hospital, SE-20502, Malmoe, Sweden
文摘
Background Several approaches have been developed for miRNA target prediction, including methods that incorporate expression profiling. However the methods are still in need of improvements due to a high false discovery rate. So far, none of the methods have used independent component analysis (ICA). Here, we developed a novel target prediction method based on ICA that incorporates both seed matching and expression profiling of miRNA and mRNA expressions. The method was applied on a cellular model of type 1 diabetes. Results Microrray profiling identified eight miRNAs (miR-124/128/192/194/204/375/672/708) with differential expression. Applying ICA on the mRNA profiling data revealed five significant independent components (ICs) correlating to the experimental conditions. The five ICs also captured the miRNA expressions by explaining >97% of their variance. By using ICA, seven of the eight miRNAs showed significant enrichment of sequence predicted targets, compared to only four miRNAs when using simple negative correlation. The ICs were enriched for miRNA targets that function in diabetes-relevant pathways e.g. type 1 and type 2 diabetes and maturity onset diabetes of the young (MODY). Conclusions In this study, ICA was applied as an attempt to separate the various factors that influence the mRNA expression in order to identify miRNA targets. The results suggest that ICA is better at identifying miRNA targets than negative correlation. Additionally, combining ICA and pathway analysis constitutes a means for prioritizing between the predicted miRNA targets. Applying the method on a model of type 1 diabetes resulted in identification of eight miRNAs that appear to affect pathways of relevance to disease mechanisms in diabetes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700