Phosphoric acid functional UV-cured proton conducting polymer membranes for fuel cells
详细信息    查看全文
  • 作者:Mustafa Hulusi U?ur ; Nilhan Kayaman-Apohan ; Duygu Avci ; Atilla Güng?r
  • 关键词:Photopolymerization ; Conducting polymers ; Membranes ; Batteries and fuel cells
  • 刊名:Ionics
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:21
  • 期:11
  • 页码:3097-3107
  • 全文大小:1,384 KB
  • 参考文献:1.Savadoga O (1998) Emerging membranes for electrochemical systems: (I) solid polymer electrolyte membranes for fuel cell systems. J New Mater Electrochem Syst 1:47-6
    2.Higashihara T, Matsumoto K, Ueda M (2009) Sulfonated aromatic hydrocarbon polymers as proton exchange membranes for fuel cells. Polymer 50:5341-357CrossRef
    3.Ghassemi H, McGrath JE (2004) Synthesis and properties of new sulfonated poly(p-phenylene) derivatives for proton exchange membranes. Polymer 45:5847-854CrossRef
    4.Nakabayashi K, Higashihara T, Ueda M (2010) Highly sulfonated multiblock copoly(ether sulfone)s for fuel cell membranes. J Polym Sci Part A: Polym Chem 48:2757-764CrossRef
    5.Lafitte B, Jannasch P (2007) Polysulfone ionomers functionalized with benzoyl (difluoromethylenephosphonic acid) side chains for proton-conducting fuel-cell membranes. J Polym Sci Part A: Polym Chem 45:269-83CrossRef
    6.Schuster M, Rager T, Noda A (2005) About the choice of the protogenic group in PEM separator materials for intermediate temperature, low humidity operation: a critical comparison of sulfonic acid, phosphonic acid and imidazole functionalized model compounds. Fuel Cells 5:355-65CrossRef
    7.Paddison SJ, Kreuer KD, Maier J (2006) About choice of the protogenic group in polymer electrolyte membranes: Ab initio modelling of sulfonic acid, phosphonic acid, and imidazole functionalized alkanes. Phys Chem Chem Phys 8:4530-542CrossRef
    8.Kreuer KD, Rabenau A, Weppner W (1982) Vehikel-Mechanismus, ein neues Modell zur Deutung der Leitf?higkeit schneller Protonenleite. Angew Chem 94:159-30
    9.Steininger H, Schuster M, Kreuer KD et al (2007) Intermediate temperature proton conductors for PEM fuel cells based on phosphonic acid as protogenic group: a progress report. Phys Chem Chem Phys 9:1764-773CrossRef
    10.Parvole J, Jannasch P (2007) In: Zhao TS, Kreuer KD, Nguyen TV (eds) Advances in fuel cells. Elsevier, New York, pp 120-85
    11.Parvole J, Jannasch P (2008) Polysulfones grafted with poly(vinylphosphonic acid) for highly proton conducting fuel cell membranes in the hydrated and nominally dry state. Macromolecules 41:3893-903CrossRef
    12.Steele BCH, Heinzel A (2001) Materials for fuel cell technologies. Nature 414:345-52CrossRef
    13.Rikukawa M, Sanui K (2000) Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Prog Polym Sci 25:1463-502CrossRef
    14.Bock T, M?hwald H, Mülhaupt R (2007) Arylphosphonic acid-functionalized polyelectrolytes as fuel cell membrane material. Macromol Chem Phys 208:1324-340CrossRef
    15.Atanasov V, Kerres J (2011) Highly phosphonated polypentafluorostyrene. Macromolecules 44:6416-423CrossRef
    16.Shao Z, Sannigrahi A, Jannasch P (2013) Poly(tetrafluorostyrenephosphonicacid)-polysulfone block copolymers and membranes. J Polym Sci Part A: Polym Chem 51:4657-666
    17.Zeng J, He B, Lamb K et al (2013) Anhydrous phosphoric acid functionalized sintered mesoporous silica nanocomposite proton exchange membranes for fuel cells. ACS Appl Mater Interfaces 5:11240-1248CrossRef
    18.Grondin J, Rodriguez D, Lassegues JC (1995) Proton conducting polymer electrolyte—the Nylon 6-10/H3PO4 blends. Solid State Ionics 77:70-5CrossRef
    19.Rodriguez D, Jegat C, Trinquet O et al (1993) Proton conduction in poly (acryl amide)-acid blends. Solid State Ionics 61:195-02CrossRef
    20.Petty-Weeks S, Zupancic JJ, Swedo JR (1988) Proton conducting interpenetrating polymer networks. Solid State Ionics 31:117-25CrossRef
    21.Tanaka R, Yamamoto H, Shono A (2000) Proton conducting behavior in non-crosslinked and crosslinked polyethyleneimine with excess phosphoric acid. Electrochim Acta 45:1385-389CrossRef
    22.He R, Li Q, Xiao G et al (2003) Proton conductivity of phosphoric acid doped polybenzimizadole and its composites with inorganic proton conductors. J Membr Sci 226:169-84CrossRef
    23.Honma I, Takeda Y, Bae JM (1999) Protonic conducting properties of sol-gel derived organic / inorganic nanocomposite membranes doped with acidic functional molecules. Solid State Ionics 120:255-64CrossRef
    24.Honma I, Nomura S, Nakajima H (2001) Protonic conducting organic/inorganic nanocomposites for polymer electrolyte membrane. J Membr Sci 185:83-4CrossRef
    25.Nakabayashi N (1985) Bonding of restorative materials to dentin: the present status in Japan. Int Dent J 35:145-54
    26.Kadoma Y (2003) Chemical structures of adhesion promoting monomers for precious metals and their bond strengths to dental metals. Dent Mater J 22:343-58CrossRef
    27.Yoshida Y, Nagakane K, Fujuda R et al (2004) Comparative study on adhesive performance of functional monomer. J Dent Res 83:454-58CrossRef
    28.Fujisawa S, Kadoma Y, Komoda Y (1991) HPLC separation of methacryloyloxy dihydrogen phosphate from dental bonding agents. Jap J Dent Mater 10:30-4
    29.Bayramoglu G, Kahraman MV, Kayaman-Apohan N et al (2007) Synthesis and characterization of UV-curable dual hybrid ol
  • 作者单位:Mustafa Hulusi U?ur (1)
    Nilhan Kayaman-Apohan (1)
    Duygu Avci (2)
    Atilla Güng?r (1)

    1. Department of Chemistry, Marmara University Faculty of Art & Science, Goztepe, 34722, Kad?k?y-Istanbul, Turkey
    2. Department of Chemistry, Bo?azi?i University, 34342, Bebek-Istanbul, Turkey
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Electrochemistry
    Materials Science
    Physical Chemistry
    Condensed Matter
    Renewable Energy Sources
    Electrical Power Generation and Transmission
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1862-0760
文摘
This paper reports the preparation and characterization of 10-methacryloyloxydecyl-dihydrogenphosphate (MDP)-based UV-curable proton-conducting polymer membranes (UVcPMs). Poly(ethylene glycol diacrylate) (PEGDA), as cross-linking agent, and N-vinyl-2-pyrrolidone (NVP), as reactive diluent, were used to arrange the mechanical and physical properties of the resulting membrane. The membrane formulation polymerized under UV irradiation and membranes were characterized by using Fourier transform infrared (FT-IR), thermal gravimetric analysis (TGA) and electrochemical impedans spectroscopy (EIS). The water uptakes, the volume swelling ratio and ion exchange capacity (IEC) measurement of the membranes were performed. The IEC values increase with an increase in MDP monomer content. Proton conductivities were measured as a function of the weight fraction of MDP content of the membrane. The conductivities are of the order of 10?-0? Scm?. The morphology of the membranes was also investigated by Atomic Force Microscopy (AFM). MDP-based UV-cured polymers are first reported as polyelectrolyte membranes. Keywords Photopolymerization Conducting polymers Membranes Batteries and fuel cells

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700