Exfoliation of graphite by dry ball milling with cellulose
详细信息    查看全文
  • 作者:Peipei Sun (1) (2)
    Shigenori Kuga (1)
    Min Wu (1)
    Yong Huang (1)
  • 关键词:Cellulose ; Graphite ; Ball milling ; Exfoliation ; Electric conductivity
  • 刊名:Cellulose
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:21
  • 期:4
  • 页码:2469-2478
  • 全文大小:3,298 KB
  • 参考文献:1. Aladekomo JB, Bragg RH (1990) Structural transformations induced in graphite by grinding: analysis of 002 X-ray diffraction line profiles. Carbon 28:897-06 CrossRef
    2. Antisari M, Montone A, Jovic N, Piscopiello E, Alvani C, Pilloni L (2006) Low energy pure shear milling: a method for the preparation of graphite nano-sheets. Scr Mater 55:1047-050 CrossRef
    3. Bacon GE (1950) A note on the rhombohedral modification of graphite. Acta Crystallogr 3:320 CrossRef
    4. Bacon GE (1952) The reduction of the crystalline perfection of graphite by grinding. Acta Crystallogr 4:392 CrossRef
    5. Benjamin JS (1970) Dispersion strengthened super alloys by mechanical alloying. Metall Trans 1:2943-951
    6. Bourlinos AB, Georgakilas V, Zboril R, Steriotis TA, Stubos AK (2009a) Liquid-phase exfoliation of graphite towards solubilized graphenes. Small 5:1841-845 CrossRef
    7. Bourlinos AB, Georgakilas V, Zboril R, Steriotis TA, Stubos AK, Trapalis C (2009b) Aqueous-phase exfoliation of graphite in the presence of polyvinylpyrrolidone for the production of water-soluble graphenes. Solid State Commun 149:2172-176 CrossRef
    8. Cai M, Thorpe D, Adamson DH, Schniepp HC (2012) Methods of graphite exfoliation. J Mater Chem 22:24992-5002 CrossRef
    9. Chabot V, Kim B, Sloper B, Tzoganakis C, Yu A (2013) High yield production and purification of few layer graphene by gum arabic assisted physical sonication. Sci Rep 3:1- CrossRef
    10. Choi EY, Choi WS, Lee YB, Noh YY (2011) Production of graphene by exfoliation of graphite in a volatile organic solvent. Nanotechnol 22:365601-65606 CrossRef
    11. Coleman JN (2013) Liquid exfoliation of defect-free graphene. Acc Chem Res 46:14-2 CrossRef
    12. Compton OC, Nguyen ST (2010) Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6:711-23 CrossRef
    13. Disma F, Aymard L, Dupont L, Tarascon JMJ (1996) Effect of mechanical grinding on the lithium intercalation process in graphites and soft carbons. Electrochem Soc 143:3959-972 CrossRef
    14. Dreyer DR, Ruoff RS, Bielawski CW (2010a) From conception to realization: an historical account of graphene and some perspectives for its future. Angew Chem Int Ed 49:9336-344 CrossRef
    15. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010b) The chemistry of graphene oxide. Chem Soc Rev 39:228-40 CrossRef
    16. Economopoulos SP, Rotas G, Miyata Y, Shinohara H, Tagmatarchis N (2010) Exfoliation and chemical modification using microwave irradiation affording highly functionalized graphene. ACS Nano 4:7499-507 CrossRef
    17. Gasparoux H, Lambert B (1970) Etude de la cinetique de guerison des defauts crees dans un graphite par broyage. Carbon 8:573-86 CrossRef
    18. Gilman PS, Benjamin JS (1983) Mechanical alloying. Ann Rev Mater Sci 13:279-00 CrossRef
    19. Hamilton CE, Lomeda JR, Sun Z, Tour JM, Barron AR (2009) High-yield organic dispersions of unfunctionalized graphene. Nano Lett 9:3460-462 CrossRef
    20. Hermann H, Schubert Th, Gruner W, Mattern N (1997) Structrue and chemical reactivity of ball-milled graphite. Nanostructured Mater 8:215-29 CrossRef
    21. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, IMcGovern IT, Holland B, Byrne M, Gun’Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563-68 CrossRef
    22. Janot R, Guerard D (2002) Ball-milling: the behavior of graphite as a function of the dispersal media. Carbon 40:2887-896 CrossRef
    23. Janot R, Guerard D (2005) Ball-milling in liquid media applications to the preparation of anodic materials for lithium-ion batteries. Prog Mater Sci 50:1-2 CrossRef
    24. Jeon IY, Shin YR, Sohn GJ, Choi HJ, Bae SY, Mahmood J, Jung SM, Seo JM, Kim MJ, Chang DW, Dai L, Baek JB (2012) Edge-carboxylated graphene nanosheets via ball milling. Proc Natl Acad Sci 109:5588-593 CrossRef
    25. Jiang X, Drzal LT (2012) Reduction in percolation threshold of injection molded high-density polyethylene/exfoliated graphene nanoplatelets composites by solid state ball milling and solid state shear pulverization. J Appl Polym Sci 12:525-35 CrossRef
    26. Kasai E, Mae K, Saito F (1995) Effect of mixed-grinding on reduction process of carbonaceous material and iron oxide composite. ISIJ Int 35:1444-451 CrossRef
    27. Khan U, Porwal H, O’Neill A, Nawaz K, May P, Coleman JN (2011) Solvent-exfoliated graphene at extremely high concentration. Langmuir 27:9077-082 CrossRef
    28. Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515-530 CrossRef
    29. Kuga Y, Shirahige M, Fujimoto T, Ohira Y, Ueda A (2004) Production of natural graphite particles with high electrical conductivity by grinding in alcoholic vapors. Carbon 42:293-00 CrossRef
    30. Laaksonen P, Kainlauri M, Laaksonen T, Shchepetov A, Jiang H, Ahopelto J, Linder MB (2010) Interfacial engineering by proteins: exfoliation and functionalization of graphene by hydrophobins. Angew Chem Int Ed 49:4946-949 CrossRef
    31. Laaksonen P, Walther A, Malho JM, Kainlauri M, Ikkala O, Linder MB (2011) Genetic engineering of biomimetic nanocomposites: diblock proteins, graphene, and nanofibrillated cellulose. Angew Chem Int Ed 50:8688-691 CrossRef
    32. Lachter J, Bragg R (1986) Interstitials in graphite and disordered carbons. Phys Rev B 33:8903-905 CrossRef
    33. Leon V, Quintana M, Herrero MA, Fierro JL, de la Hoz A, Prato M, Vazquez E (2011) Few-layer graphenes from ball-milling of graphite with melamine. Chem Commun 47:10936-0938 CrossRef
    34. Liang YT, Hersam MC (2010) Highly concentrated graphene solutions via polymer enhanced solvent exfoliation and Iterative solvent exchange. J Am Chem Soc 132:17661-7663 CrossRef
    35. Lotya M, King PJ, Khan U, De S, Coleman JN (2010) High-concentration, surfactant stabilized graphene dispersions. ACS Nano 4:3155-162 CrossRef
    36. Malho JM, Laaksonen P, Walther A, Ikkala O, Linder MB (2012) Facile method for stiff, tough, and strong nanocomposites by direct exfoliation of multilayered graphene into native nanocellulose matrix. Biomacromolecules 13:1093-099 CrossRef
    37. Mark JE (1999) Polymer data handbook. Oxford University Press, Oxford
    38. May P, Khan U, Hughes JM, Coleman JN (2012) Role of solubility parameters in understanding the steric stabilization of exfoliated two-dimensional nanosheets by adsorbed polymers. J Phys Chem C 116:11393-1400 CrossRef
    39. Milev A, Wilson M, Kannangara GSK, Tran N (2008) X-ray diffraction line profile analysis of nanocrystalline graphite. Mater Chem Phys 111:346-50 CrossRef
    40. Minami M, Kim Y, Miyashita K, Kazaoui S, Nalini B (2006) Cellulose derivatives as excellent dispersants for single-wall carbon nanotubes as demonstrated by absorption and photoluminescence spectroscopy. Appl Phys Lett 88:093123 CrossRef
    41. Montone A, Grbovic J, Bassetti A, Mirenghi L, Rotolo P, Bonetti E, Pasquini L, Antisari MV (2006) Microstructure, surface properties and hydrating behaviour of Mg–C composites prepared by ball milling with benzene. Int J Hydrogen Energy 31:2088-096 CrossRef
    42. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941-994 CrossRef
    43. Nakamizo M, Honda H (1978) Raman spectra of ground natural graphite. Carbon 16:281-83 CrossRef
    44. Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55:241-49 CrossRef
    45. Ong TS, Yang H (2000) Effect of atmosphere on the mechanical milling of natural graphite. Carbon 38:2077-085 CrossRef
    46. Oyer AJ, Carrillo JM, Hire CC, Schniepp HC, Asandei AD, Dobrynin AV, Adamson DH (2012) Stabilization of graphene sheets by a structured benzene/hexafluorobenzene mixed solvent. J Am Chem Soc 134:5018-021 CrossRef
    47. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 5:217-24 CrossRef
    48. Salver-Disma F, Fahri R, GuCry C, Tarascon JM (1998) Raman study on carbonaceous materials prepared by mechanical milling. Mol Cryst Liq Cryst 310:219-24 CrossRef
    49. Salver-Disma F, Du Pasquier A, Tarascon JM, Lassegues JC, Rouzaud JN (1999a) Physical characterization of carbonaceous materials prepared by mechanical grinding. J Power Sources 81-2:291-95 CrossRef
    50. Salver-Disma F, Tarascon JM, Clinard C, Rouzaud JN (1999b) Transmission electron microscopy studies on carbon materials prepared by mechanical milling. Carbon 37:1941-959 CrossRef
    51. Saxena I, Brown RM (2005) Cellulose biosynthesis: current views and evolving concepts. Ann Bot 96:9-1 CrossRef
    52. Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud’homme RK, Car R, Saville DA, Aksay IA (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110:8535-539 CrossRef
    53. Smith CI, Miyaoka H, Ichikawa T, Jones MO, Harmer J, Ishida W, Edwards PP, Kojima Y, Fuji H (2009) Electron spin resonance investigation of hydrogen absorption in ball-milled graphite. J Phys Chem C 113:5409-416 CrossRef
    54. Son HT, Kim TS, Suryanarayana C, Chun BS (2003) Homogeneous dispersion of graphite in a 6061 aluminum alloy by ball milling. Mater Sci Eng A 348:163-69 CrossRef
    55. Sun Y, Wu Q, Shi G (2011) Graphene based new energy materials. Energy Environ Sci 4:113-32
    56. Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46:1-84 CrossRef
    57. Suryanarayana C, Al-Aqeeli N (2013) Mechanically alloyed nanocomposites. Prog Mater Sci 58:383-02 CrossRef
    58. Tanaka T, Motoyama M, Ishihara KN, Shingu PH (1995) Characterization of carbon in mechanically alloyed C-10 at% Fe powder. Mater Trans 36:276-81 CrossRef
    59. Tang J, Zhao W, Li L, Simmons WB, Zhou WL, Ikuhara Y, Zhang JH (1996) Amorphization of graphite induced by mechanical milling and subsequent crystallization of the amorphous carbon upon heat treating. J Mater Res 11:733-38 CrossRef
    60. Tidjani M, Lachter J, Kabre TS, Bragg RH (1986) Structural disorder induced in graphite by grinding. Carbon 24:447-49 CrossRef
    61. Welham NJ, Berbenni V, Chapman PG (2003) Effect of extended ball milling on graphite. J Alloys Compd 349:255-63 CrossRef
    62. Wuest JD, Rochefort A (2010) Strong adsorption of aminotriazines on graphene. Chem Commun 46:2923-925 CrossRef
    63. Yao Y, Lin Z, Li Z, Song X, Moon KS, Wong CP (2012) Large-scale production of two- dimensional nanosheets. J Mater Chem 22:13494-3499 CrossRef
    64. Yokota S, Ueno T, Kitaoka T, Wariishi H (2007) Molecular imaging of single cellulose chains aligned on ahighly oriented pyrolytic graphite surface. Carbohydr Res 342:2593-598 CrossRef
    65. Young RJ, Kinloch IA, Gong L, Novoselov KS (2012) The mechanics of graphene nanocomposites: a review. Compos Sci Technol 72:1459-476 CrossRef
    66. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906-924 CrossRef
  • 作者单位:Peipei Sun (1) (2)
    Shigenori Kuga (1)
    Min Wu (1)
    Yong Huang (1)

    1. Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing, 100190, People’s Republic of China
    2. University of Chinese Academy of Sciences, Beijing, 100039, People’s Republic of China
  • ISSN:1572-882X
文摘
Dry ball milling of graphite with cellulose and related polysaccharides was found effective for exfoliation-dispersion of graphene-like carbon. The exfoliation behavior was found to depend strongly on the polymer species; namely, polysaccharides are much more effective than thermoplastic polymers. The compression-molded slabs from co-milled powder with cellulose and carboxymethylcellulose showed an electrical percolation threshold of 1.0?% (w/w) or lower. The carbon fraction isolated from milling with carboxymethylcellulose was water-dispersible, containing single- to few-layer graphenes. This method can provide facile and solventless graphene exfoliation and mechanical alloying with polymers.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700