Long-Term Dietary Alpha-Linolenic Acid Supplement Alleviates Cognitive Impairment Correlate with Activating Hippocampal CREB Signaling in Natural Aging Rats
详细信息    查看全文
  • 作者:Hui Gao ; Peipei Yan ; Shun Zhang ; Hao Huang ; Fenghong Huang
  • 刊名:Molecular Neurobiology
  • 出版年:2016
  • 出版时间:September 2016
  • 年:2016
  • 卷:53
  • 期:7
  • 页码:4772-4786
  • 全文大小:5,045 KB
  • 刊物主题:Neurosciences; Neurobiology; Cell Biology; Neurology;
  • 出版者:Springer US
  • ISSN:1559-1182
  • 卷排序:53
文摘
Alpha-linolenic acid (ALA) is a major precursor of the essential n-3 polyunsaturated fatty acid (PUFA), whose deficiency alters the structure and function of membranes and induces cerebral dysfunctions. The major purpose of this study was to investigate the protective effect of prolonged ALA intake on cognitive function during natural aging. Female Sprague–Dawley rats aged 6 months were chronically treated with ALA and/or lard per day for 12 months. Regular diet-treated rats, both young and old (4 and 18 months old, respectively) served as controls. Rats fed on regular diet during aging showed memory deficits in Morris water maze, which were further exacerbated by lard intake. However, supplementation with ALA for 12 months dose-dependently improved the performance in spatial working memory tasks. Memory performance correlated well with the activation of cAMP response element-binding protein (CREB) and increases in both levels of brain-derived neurotrophic factor (BDNF) and its specific receptor tyrosine kinase B (TrkB) phosphorylation in the hippocampus. Further study identified that hippocampal extracellular signal-related kinase (ERK) and Akt rather than calcium calmodulin kinase IV (CaMKIV) and protein kinase A (PKA), the upstream signalings of CREB, were also activated by ALA supplement. Moreover, memory improvement was accompanied with alterations of hippocampal synaptic structure and number, suggestive of enhancement in synaptic plasticity. Together, these results suggest that long-term dietary intake of ALA enhances CREB/BDNF/TrkB pathway through the activation of ERK and Akt signalings in hippocampus, which contributes to its ameliorative effects on cognitive deficits in natural aging.KeywordsALAAgingCognitionCREB/BDNF/TrkB

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700