Optimization, Kinetics, Isotherms, and Thermodynamics Studies of Antimony Removal in Electrocoagulation Process
详细信息    查看全文
  • 作者:Peipei Song ; Zhaohui Yang ; Guangming Zeng ; Xia Yang…
  • 关键词:Antimony ; Electrocoagulation ; Response surface methodology ; Kinetics ; Isotherms ; Thermodynamics
  • 刊名:Water, Air, and Soil Pollution
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:226
  • 期:11
  • 全文大小:1,386 KB
  • 参考文献:Ahmadi, M., Vahabzadeh, F., Bonakdarpour, B., Mofarrah, E., & Mehranian, M. (2005). Application of the central composite design and response surface methodology to the advanced treatment of olive oil processing wastewater using Fenton’s peroxidation. J Hazard Mater, 123(1-3), 187–195.CrossRef
    Allen, S. J. (1996). Types of adsorbent materials-use of adsorbents for removal of pollutants from wastewaters (p. 59). Boca Raton, FL, USA: CRC.
    Aydin, Y. A., & Aksoy, N. D. (2009). Adsorption of chromium on chitosan: optimization, kinetics and thermodynamics. Chem Eng J, 151(1-3), 188–194.CrossRef
    Balasubramanian, N., Kojima, T., & Srinivasakannan, C. (2009). Arsenic removal through electrocoagulation: kinetic and statistical modeling. Chem Eng J, 155(1-2), 76–82.CrossRef
    Bhatti, M. S., Reddy, A. S., Kalia, R. K., & Thukral, A. K. (2011). Modeling and optimization of voltage and treatment time for electrocoagulation removal of hexavalent chromium. Desalination, 269(1-3), 157–162.CrossRef
    Boparai, H. K., Joseph, M., & O’Carroll, D. M. (2011). Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J Hazard Mater, 186(1), 458–465.CrossRef
    CEC (Council of the European Communities). (1976). Council Directive 76/substances discharged into aquatic environment of the community. Off J L, 129, 23–29.
    CEC (Council of the European Communities). (1980). Council Directive relating to the quality of water intended for human consumption. 80/778/EEC.
    CEPA. (2002). Water and wastewater monitoring analysis methods (4th ed.). China Environmental Science: Beijing.
    Chen, X. M., Chen, G. H., & Yue, P. L. (2000). Separation of pollutants from restaurant wastewater by electrocoagulation. Sep Purif Technol, 19(1-2), 65–76.CrossRef
    Chien, S. H., & Clayton, W. R. (1980). Application of Elovich equation to the kinetics of phosphate release and sorption in soils. Soil Sci Soc Am J, 44(2), 265–268.CrossRef
    Dou, X. M., Mohan, D., Zhao, X. Q., & Pittman, C. U. (2015). Antimonate removal from water using hierarchical macro-/mesoporous amorphous alumina. Chem Eng J, 264, 617–624.CrossRef
    Feng, J., Yang, Z. H., Zeng, G. M., Huang, J., Xu, H. Y., Zhang, Y. Y., Wei, S. H., & Wang, L. K. (2013). The adsorption behavior and mechanism investigation of Pb(II) removal by flocculation using microbial flocculant GA1. Bioresource Technol, 148, 414–421.CrossRef
    Filella, M., Belzile, N., & Chen, Y. W. (2002). Antimony in the environment: a review focused on natural waters. I. Occurrence. Earth Sci Rev, 57(1-2), 125–176.CrossRef
    Ganesan, P., Lakshmi, J., Sozhan, G., & Vasudevan, S. (2013). Removal of manganese from water by electrocoagulation: adsorption, kinetics and thermodynamic studies. Can J Chem Eng, 91(3), 448–458.CrossRef
    Gomes, J. A. G., Daida, P., & Kesmez, M. (2007). Arsenic removal by electrocoagulation using combined Al-Fe electrode system and characterization of products. J Hazard Mater, 139(10), 220–231.CrossRef
    Guo, X. J., Wu, Z. J., & He, M. C. (2009). Removal of antimony(V) and antimony(III) from drinking water by coagulation-flocculation-sedimentation (CFS). Water Res, 43(17), 4327–4335.CrossRef
    Guo, X. J., Wu, Z. J., He, M. C., Meng, X. G., Jin, X., Qiu, N., & Zhang, J. (2014). Adsorption of antimony onto iron oxyhydroxides: adsorption behavior and surface structure. J Hazard Mater, 276, 339–345.CrossRef
    Gupta, S. S., & Bhattacharyya, K. G. (2006). Adsorption of Ni(II) on clays. J Colloid Interface Sci, 295(1), 21–32.CrossRef
    Ho, Y. S., & McKay, G. (1998). A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Proc Saf Environ Prot, 76(4), 332–340.CrossRef
    Holt, P. K., Barton, G. W., & Mitchell, C. A. (2005). The future for electrocoagulation as a localised water treatment technology. Chemosphere, 59(3), 355–367.CrossRef
    Isa, M. H., Ezechi, E. H., Ahmed, Z., Magram, S. F., & Kutty, S. R. M. (2014). Boron removal by electrocoagulation and recovery. Water Res, 51, 113–123.CrossRef
    Kobya, M., Can, O. T., & Bayramoglu, M. (2003). Treatment of textile wastewaters by electrocoagulation using iron and aluminum electrodes. J Hazard Mater, 100(1-3), 163–178.CrossRef
    Kobya, M., Gebologlu, U., Ulu, F., & Oncel, S. (2011). Removal of arsenic from drinking water by the electrocoagulation using Fe and Al electrodes. Electrochim Acta, 56(14), 5060–5070.CrossRef
    Kobya, M., Demirbas, E., Gebologlu, U., Oncel, M. S., & Yildirim, Y. (2013). Optimization of arsenic removal from drinking water by electrocoagulation batch process using response surface methodology. Desalin Water Treat, 51(34-36), 1–10.CrossRef
    Lai, C. L., & Lin, S. H. (2003). Electrocoagulation of chemical mechanical polishing (CMP) wastewater from semiconductor fabrication. Chem Eng J, 95(1-3), 205–211.CrossRef
    Mall, I. D., Srivastava, V. C., Agarwal, N. K., & Mishra, I. M. (2005). Removal of Congo Red from aqueous solution by bagasse fly ash and activate d carbon: kinetic study and equilibrium isotherm analysis. Chemosphere, 61(4), 492–501.CrossRef
    Mall, I. D., Srivastava, V. C., Agarwal, N. K., & Mishra, I. M. (2007). Removal of Congo Red on coal-based mesoporous activated carbon. Dyes Pigm, 74(1), 34–40.CrossRef
    Myers, R. H., & Montgomery, D. C. (2002). Response surface methodology: process and product optimization using designed experiments (2nd ed.). New York: John Wiley and Sons.
    Ölmez, T. (2009). The optimization of Cr(VI) reduction and removal by electrocoagulation using response surface methodology. J Hazard Mater, 162(2-3), 1371–1378.CrossRef
    Qu, J. H., & Liu, H. J. (2007). Electrochemical principles and techniques in water treatment (pp. 205–209). Beijing: Science Press.
    SAC (Standardization Administration of the People’s Republic of China). (2006). Standards for drinking water quality. Beijing: SAC (Standardization Administration of the People’s Republic of China). GB-5749-2006.
    Song, P. P., Yang, Z. H., Xu, H. Y., Huang, J., Yang, X., & Wang, L. K. (2014). Investigation of influencing factors and mechanism of antimony and arsenic removal by electrocoagulation using Fe–Al electrodes. Ind Eng Chem Res, 53(33), 12911–12919.CrossRef
    Sundaram, C. S., Viswanathan, N., & Meenakshi, S. (2008). Defluoridation chemistry of synthetic hydroxyapatite at nanoscale: equilibrium and kinetic studies. J Hazard Mater, 155(1-2), 206–215.CrossRef
    USEPA. (1979). Water related fate of the 129 priority pollutants. Washington, DC: USEPA. Doc., 745-R-00-007.
    USEPA. (1984). Antimony: an environmental and health effects assessment. Washington, DC: US Environmental Protection Agency. Office of drinking water.
    Vasudevan, S., & Oturan, M. A. (2014). Electrochemistry: as cause and cure in water pollution—an overview. Environ Chem Lett, 12(1), 97–108.CrossRef
    Ville, K., Toivo, K., Jaakko, R., & Ulla, L. (2013). Recent applications of electrocoagulation in treatment of water and wastewater-a review. Green and Sus Chem, 3, 89–121.CrossRef
    Vithanage, M., Rajapaksha, A. U., Dou, X. M., Bolan, N. S., Yang, J. E., & Ok, Y. S. (2013). Surface complexation modeling and spectroscopic evidence of antimony adsorption on iron-oxide-rich red earth soils. J Colloid Interf Sci, 406, 217–224.CrossRef
    Wan, W., Pepping, T. J., Banerji, T., Chaudhari, S., & Giammar, D. E. (2011). Effects of water chemistry on arsenic removal from drinking water by electrocoagulation. Water Res, 45(1), 384–392.CrossRef
    Weber, W. J., & Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. Journal of Sanitary Engineering Division (Proceeding of the asce), 89, 31–59.
    WHO. (2006). Health criteria and other supporting information in: Guidelines for Drinking-water Quality (Secondth ed.). Geneva: World Health Organization.
    Winship, K. A. (1986). Toxicity of antimony and its compounds. Adverse Drug React Acute Poisoning Rev, 6(2), 67–90.
    Yang, Z. H., Xu, H. Y., Zeng, G. M., Luo, Y. L., Yang, X., Huang, J., Wang, L. K., & Song, P. P. (2015). The behavior of dissolution/passivation and the transformation of passive films during electrocoagulation: influences of initial pH, Cr(VI) concentration, and alternating pulsed current. Electrochim Acta, 153(2), 149–158.CrossRef
    Yousuf, M., Mollah, A., Schennach, R., & Parga, J. R. (2001). Electrocoagulation (EC) science and applications. J Hazard Mater, 84(1), 29–41.CrossRef
    Zhu, J., Wu, F. C., Pan, X. L., Guo, J. Y., & Wen, D. S. (2011). Removal of antimony from antimony mine flotation wastewater by electrocoagulation with aluminum electrodes. J Environ Sci, 23(7), 1066–1071.CrossRef
  • 作者单位:Peipei Song (1) (2)
    Zhaohui Yang (1) (2)
    Guangming Zeng (1) (2)
    Xia Yang (1) (2)
    Haiyin Xu (1) (2)
    Jing Huang (1) (2)
    Like Wang (1) (2)

    1. College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
    2. Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, China
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Atmospheric Protection, Air Quality Control and Air Pollution
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Terrestrial Pollution
    Hydrogeology
  • 出版者:Springer Netherlands
  • ISSN:1573-2932
文摘
In this study, electrocoagulation (EC) with hybrid Fe–Al electrodes was used to remove antimony from contaminated surface water. Response surface methodology was applied to investigate the interactive effects of the operating parameters on antimony removal and optimize these variables. Results showed that the relationship between operating parameters and the response was well described by a second-order polynomial equation. Under the optimal conditions of current density 2.58 mA/cm2, pH 5.24, initial concentration 521.3 μg/L, and time 89.17 min, more than 99 % antimony were removed. Besides, the antimony adsorption behavior in EC process was also investigated. Adsorption kinetics and isotherms studies suggested that the adsorption process followed well the pseudo-second-order kinetic model and the Langmuir adsorption model, respectively. Adsorption thermodynamics study revealed that the reaction was spontaneous, endothermic, and thermodynamically favorable. These results further proved that the main mechanism involved in antimony removal in EC process could be chemisorption.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700