Preparation of bacterial cellulose/carbon nanotube nanocomposite for biological fuel cell
详细信息    查看全文
文摘
In this study, electrically conducting composite membranes were prepared by incorporating carboxylic multi-walled carbon nanotubes (c-MWCNTs) into Bacterial Cellulose (BC) pellicles. The biocathode and bioanode were prepared by a simple method of adsorption. An enzyme biological fuel cell (EBFC) composed of a biocathode and an enzymatic bioanode were developed and tested. The materials was characterised by field emission scanning electron microscope (FESEM), Fourier Transform Infrared (FTIR) Spectroscopy and Thermogravimetric analysis (TGA). The results showed that the presence of c-MWCNTs on BC was certified, on which c-MWCNTs loading was calculated as 30.02/100 g. The BC/c-MWCNTs/Lac composite membranes was characterized by cyclic voltammetry (CV). An EBFC was characterized by linear sweep voltammetry (LSV). The results showed EBFC exhibited excellent performance with the largest open circuit voltage (0.76 V) and a maximum power density value (55 uW/cm3). Additionally, the cell also exhibited acceptable stability over the recording of 30 days. BC was considered to be suitable for advanced applications such as an enzymatic carrier of biological fuel cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700