An Extensive Adiabatic Invariant for the Klein–Gordon Model in the Thermodynamic Limit
详细信息    查看全文
  • 作者:Antonio Giorgilli ; Simone Paleari ; Tiziano Penati
  • 刊名:Annales Henri Poincare
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:16
  • 期:4
  • 页码:897-959
  • 全文大小:760 KB
  • 参考文献:1. Arnol’d, V.: Chapitres supplémentaires de la théorie des équations différentielles ordinaires. “Mir- Moscow (1984) (Translated from the Russian by Djilali Embarek, Reprint of the 1980 edition)
    2. Arnol’d, V.I. (1963) Proof of a theorem of A N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian. Uspehi Mat. Nauk 18: pp. 13-40
    3. Bambusi, D., Giorgilli, A. (1993) Exponential stability of states close to resonance in infinite-dimensional Hamiltonian systems. J. Stat. Phys. 71: pp. 569-606 CrossRef
    4. Bambusi, D, Nekhoroshev, N.N. (1998) A property of exponential stability in nonlinear wave equations near the fundamental linear mode. Phys. D 122: pp. 73-104 CrossRef
    5. Bambusi, D., Ponno, A. (2006) On metastability in FPU. Commun. Math. Phys. 264: pp. 539-561 CrossRef
    6. Benettin, G., Christodoulidi, H., Ponno, A. (2013) The Fermi–Pasta–Ulam problem and its underlying integrable dynamics. J. Stat. Phys. 152: pp. 195-212 CrossRef
    7. Benettin, G., Livi, R., Ponno, A. (2009) The Fermi–Pasta–Ulam problem: scaling laws vs. initial conditions. J. Stat. Phys. 135: pp. 873-893 CrossRef
    8. Benettin, G., Ponno, A. (2011) Time-scales to equipartition in the Fermi–Pasta–Ulam problem: finite-size effects and thermodynamic limit. J. Stat. Phys. 144: pp. 793-812 CrossRef
    9. Benettin, G., Fr?hlich, J., Giorgilli, A. (1988) A Nekhoroshev-type theorem for Hamiltonian systems with infinitely many degrees of freedom. Commun. Math. Phys. 119: pp. 95-108 CrossRef
    10. Benettin, G., Galgani, L., Giorgilli, A. (1989) Realization of holonomic constraints and freezing of high frequency degrees of freedom in the light of classical perturbation theory. II. Commun. Math. Phys. 121: pp. 557-601 CrossRef
    11. Berchialla, L., Giorgilli, A., Paleari, S. (2004) Exponentially long times to equipartition in the thermodynamic limit. Phys. Lett. A 321: pp. 167-172 CrossRef
    12. Bourgain, J.: Hamiltonian methods in nonlinear evolution equations. In: Fields Medallists-lectures, pp. 542-54. World Scientific Publishing, River Edge, NJ, (1997)
    13. Bourgain, J. (1998) Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schr?dinger equations. Ann. Math. (2) 148: pp. 363-439 CrossRef
    14. Carati, A., Galgani, L., Giorgilli, A., Paleari, S. (2007) Fermi–Pasta–Ulam phenomenon for generic initial data. Phys. Rev. E 76: pp. 022104 CrossRef
    15. Carati, A. (2007) An averaging theorem for Hamiltonian dynamical systems in the thermodynamic limit. J. Stat. Phys. 128: pp. 1057-1077 CrossRef
    16. Carati, A., Maiocchi, A.M (2012) Exponentially long stability times for a nonlinear lattice in the thermodynamic limit. Commun. Math. Phys. 314: pp. 129-161 CrossRef
    17. Craig, W.: KAM theory in infinite dimensions. In: Dynamical systems and probabilistic methods in partial differential equations (Berkeley, CA, 1994), pp. 31-6. American Mathematical Society, Providence, RI (1996)
    18. Davis, Philip J.: Circulant matrices. A Wiley-Interscience Publication, Pure and Applied Mathematics. Wiley, New York (1979)
    19. De Roeck, W., Huveneers, F.: Asymptotic localization of energy in non-disordered oscillator chains. ArXiv e-prints, May 2013. 1305.5127
    20. Fr?hlich, J., Spencer, T., Wayne, C.E.: An invariant torus for nearly integrable Hamiltonian systems with infinitely many degre
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Mathematical and Computational Physics
    Dynamical Systems and Ergodic Theory
    Quantum Physics
    Mathematical Methods in Physics
    Relativity and Cosmology
    Elementary Particles and Quantum Field Theory
  • 出版者:Birkh盲user Basel
  • ISSN:1424-0661
文摘
We construct an extensive adiabatic invariant for a Klein–Gordon chain in the thermodynamic limit. In particular, given a fixed and sufficiently small value of the coupling constant a, the evolution of the adiabatic invariant is controlled up to time scaling as β 1/a for any large enough value of the inverse temperature β. The time scale becomes a stretched exponential if the coupling constant is allowed to vanish jointly with the specific energy. The adiabatic invariance is exhibited by showing that the variance along the dynamics, i.e. calculated with respect to time averages, is much smaller than the corresponding variance over the whole phase space, i.e. calculated with the Gibbs measure, for a set of initial data of large measure. All the perturbative constructions and the subsequent estimates are consistent with the extensive nature of the system.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700