Silver nanoparticle-modified electrode for the determination of nitro compound-containing pesticides
详细信息    查看全文
  • 作者:Camila Alves de Lima ; Edson Roberto Santana…
  • 关键词:Silver nanoparticles ; Modified electrode ; Pesticides ; Water ; Foods
  • 刊名:Analytical and Bioanalytical Chemistry
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:408
  • 期:10
  • 页码:2595-2606
  • 全文大小:448 KB
  • 参考文献:1.Pandey P, Singh SP, Arya SK, Gupta V, Datta M, Singh S, et al. Application of thiolated gold nanoparticles for the enhancement of glucose oxidase activity. Langmuir. 2007;23:3333–7.CrossRef
    2.Pérez-López B, Merkoçi A. Nanoparticles for the development of improved (bio) sensing systems. Anal Bioanal Chem. 2011;399:1577–90.CrossRef
    3.Rounaghi G, Kakhki RM, Azizi-Toupkanloo H. Voltammetric determination of 4-nitrophenol using a modified carbon paste electrode based on a new synthetic crown ether/silver nanoparticles. Mater Sci Eng C. 2012;32:172–7.CrossRef
    4.Zhai H, Liang Z, Chen Z, Chen Z, Wang H, Liu Z, et al. Simultaneous detection of metronidazole and chloramphenicol by differential pulse stripping voltammetry using a silver nanoparticles/sulfonate functionalized graphene modified glassy carbon electrode. Electrochim Acta. 2015;171:105–13.CrossRef
    5.Habibi B, Jahanbakhshi M. Silver nanoparticles/multi walled carbon nanotubes nanocomposite modified electrode: voltammetric determination of clonazepam. Electrochim Acta. 2014;118:10–7.CrossRef
    6.Asadian E, Irajizad A, Shahrokhian S. Voltammetric studies of azathioprine on the surface of graphite electrode modified with graphene nanosheets decorated with Ag nanoparticles. Mater Sci Eng C. 2016;58:1098–104.CrossRef
    7.Lima CA, Silva PS, Spinelli A. Chitosan-stabilized silver nanoparticles for voltammetric detection of nitrocompounds. Sensors Actuators B Chem. 2014;196:39–45.CrossRef
    8.Li J, Yin W, Tan Y, Pan H. A sensitive electrochemical molecularly imprinted sensor based on catalytic amplification by silver nanoparticles for 3-indoleacetic acid determination. Sensors Actuators B Chem. 2014;197:109–15.CrossRef
    9.Habibi B, Jahanbakhshi M. A novel nonenzymatic hydrogen peroxide sensor based on the synthesized mesoporous carbon and silver nanoparticles nanohybrid. Sensors Actuators B Chem. 2014;203:919–25.CrossRef
    10.Tang S, Tong P, You X, Lu W, Chen J, Li G, et al. Label free electrochemical sensor for Pb2+ based on graphene oxide mediated deposition of silver nanoparticles. Electrochim Acta. 2016;187:286–92.CrossRef
    11.Habibi B, Jahanbakhshi M, Pournaghi-Azar MH. Voltammetric and amperometric determination of hydrogen peroxide using a carbon-ceramic electrode modified with a nanohybrid composite made from single-walled carbon nanotubes and silver nanoparticles. Microchim Acta. 2012;177:185–93.CrossRef
    12.Habibi B, Jahanbakhshi M. Sensitive determination of hydrogen peroxide based on a novel nonenzymatic electrochemical sensor: silver nanoparticles decorated on nanodiamonds. J Iran Chem Soc. 2015;12:1431–8.CrossRef
    13.Ai L, Jiang J. Catalytic reduction of 4-nitrophenol by silver nanoparticles stabilized on environmentally benign macroscopic biopolymer hydrogel. Bioresour Technol. 2013;132:374–7.CrossRef
    14.Thomas V, Namdeo M, Mohan YM, Bajpai SK, Bajpai M. Review on polymer, hydrogel and microgel metal nanocomposites: a facile nanotechnological approach. J Macromol Sci A. 2007;45:107–19.CrossRef
    15.Wei D, Ye Y, Jia X, Yuan C, Qian W. Chitosan as an active support for assembly of metal nanoparticles and application of the resultant bioconjugates in catalysis. Carbohydr Res. 2010;345:74–81.CrossRef
    16.Hrapovic S, Majid E, Liu Y, et al. Metallic nanoparticle-carbon nanotube composites for electrochemical determination of explosive nitroaromatic compounds. Anal Chem. 2006;78:5504–12.CrossRef
    17.O’Mahony AM, Wang J. Nanomaterial-based electrochemical detection of explosives: a review of recent developments. Anal Methods. 2013;5:4296–309.CrossRef
    18.Shah J, Rasul Jan M, Shehzad F, Ara B. Quantification of pendimethalin in soil and garlic samples by microwave-assisted solvent extraction and HPLC method. Environ Monit Assess. 2011;175:103–8.CrossRef
    19.Dimitrov BD, Gadeva PG, Benova DK, Bineva MV. Comparative genotoxicity of the herbicides Roundup, Stomp and Reglone in plant and mammalian test systems. Mutagenesis. 2006;21:375–82.CrossRef
    20.Sanghavi BJ, Hirsch G, Karna SP, Srivastava AK. Potentiometric stripping analysis of methyl and ethyl parathion employing carbon nanoparticles and halloysite nanoclay modified carbon paste electrode. Anal Chim Acta. 2012;735:37–45.CrossRef
    21.Liu G, Guo W, Yin Z. Covalent fabrication of methyl parathion hydrolase on gold nanoparticles modified carbon substrates for designing a methyl parathion biosensor. Biosens Bioelectron. 2014;53:440–6.CrossRef
    22.Papadopoulou-Mourkidou E, Patsias J. Development of a semi-automated high-performance liquid chromatographic-diode array detection system for screening pesticides at trace levels in aquatic systems of the Axios River basin. J Chromatogr A. 1996;726:99–113.CrossRef
    23.Seebunrueng K, Santaladchaiyakit Y, Srijaranai S. Vortex-assisted low density solvent based demulsified dispersive liquid-liquid microextraction and high-performance liquid chromatography for the determination of organophosphorus pesticides in water samples. Chemosphere. 2014;103:51–8.CrossRef
    24.Nieto-García AJ, Romero-González R, Garrido-Frenich A. Multi-pesticide residue analysis in nutraceuticals from grape seed extracts by gas chromatography coupled to triple quadrupole mass spectrometry. Food Control. 2015;47:369–80.CrossRef
    25.Martínez-Uroz MA, Mezcua M, Valles NB, Fernández-Alba AR. Determination of selected pesticides by GC with simultaneous detection by MS (NCI) and μ-ECD in fruit and vegetable matrices. Anal Bioanal Chem. 2012;402:1365–72.CrossRef
    26.Yu R, Liu Q, Liu J, Wang Q, Wang Y. Concentrations of organophosphorus pesticides in fresh vegetables and related human health risk assessment in Changchun, Northeast China. Food Control. 2016;60:353–60.CrossRef
    27.Fenoll J, Hellín P, Martínez CM, Miguel M, Flores P. Multiresidue method for analysis of pesticides in pepper and tomato by gas chromatography with nitrogen-phosphorus detection. Food Chem. 2007;105:711–9.CrossRef
    28.Li J-W, Wang Y-L, Yan S, Li X-J, Pan S-Y. Molecularly imprinted calixarene fiber for solid-phase microextraction of four organophosphorous pesticides in fruits. Food Chem. 2016;192:260–7.CrossRef
    29.Hegedus G, Bélai I, Székács A. Development of an enzyme-linked immunosorbent assay (ELISA) for the herbicide trifluralin. Anal Chim Acta. 2000;421:121–33.CrossRef
    30.Tang T, Deng J, Zhang M, Shi G, Zhou T. Quantum dot-DNA aptamer conjugates coupled with capillary electrophoresis: a universal strategy for ratiometric detection of organophosphorus pesticides. Talanta. 2016;146:55–61.CrossRef
    31.Yan X, Li H, Han X, Su X. A ratiometric fluorescent quantum dots based biosensor for organophosphorus pesticides detection by inner-filter effect. Biosens Bioelectron. 2015;74:277–83.
    32.Gerent GG, Gonçalves CQ, da Silva PS, Spinelli A. In situ bismuth-film electrode for square-wave cathodic voltammetric detection of pendimethalin at nanomolar level. Electrochim Acta. 2015;168:379–85.CrossRef
    33.Galli A, De Souza D, Machado SAS. Pendimethalin determination in natural water, baby food and river sediment samples using electroanalytical methods. Microchem J. 2011;98:135–43.CrossRef
    34.Anandhakumar S, Dhanalakshmi K, Mathiyarasu J. Non-enzymatic organophosphorus pesticide detection using gold atomic cluster modified electrode. Electrochem Commun. 2014;38:15–8.CrossRef
    35.Xiang L, Zhao C, Wang J. Sensors and biosensors for pesticide detection. Sens Lett. 2011;9:1184–9.CrossRef
    36.Ni Y, Wang L, Kokot S. Simultaneous determination of three herbicides by differential pulse voltammetry and chemometrics. J Environ Sci Health B. 2011;46:328–35.CrossRef
    37.Kotouček M, Opravilová M. Voltammetric behaviour of some nitropesticides at the mercury drop electrode. Anal Chim Acta. 1996;329:73–81.CrossRef
    38.Lima CA, Spinelli A. Electrochemical behavior of progesterone at an ex situ bismuth film electrode. Electrochim Acta. 2013;107:542–8.CrossRef
    39.Balaa R, Sharmaa RK, Wangoo N. Highly sensitive colorimetric detection of ethyl parathion using gold nanoprobes. Sensors Actuators B Chem. 2015;210:425–30.CrossRef
    40.Tang JS, Xiang L. Development of a competitive format sorbent assay for the determination of parathion in water using molecular imprinted polymer as specific sorbent carrier. Chin Chem Lett. 2010;21:1361–5.CrossRef
    41.Escrig-Tena I, Rodríguez LA, Esteve-Romero J, García-Alvarez-Coque MC. Micellar modified spectrophotometric determination of nitrobenzenes based upon reduction with tin(II), diazotization and coupling with the Bratton–Marshall reagent. Talanta. 1998;47:43–52.CrossRef
  • 作者单位:Camila Alves de Lima (1)
    Edson Roberto Santana (1)
    Jamille Valéria Piovesan (1)
    Almir Spinelli (1)

    1. Departamento de Química–CFM, Universidade Federal de Santa Catarina, Campus Reitor João David Ferreira Lima, 88040-900, Florianópolis, Santa Catarina, Brazil
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Food Science
    Inorganic Chemistry
    Physical Chemistry
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1618-2650
文摘
This paper reports the electroanalytical determination of pendimethalin and ethyl parathion by square-wave adsorptive stripping voltammetry using a material comprised of chitosan-stabilized silver nanoparticles to modify a glassy carbon electrode. Under optimized experimental conditions, the peak current was found to vary linearly with the concentration of pendimethalin in the range of 70 to 2000 nmol L−1 and with concentration of ethyl parathion in the range of 40 to 8000 nmol L−1. Detection limits of 36 and 40 nmol L−1 were obtained for pendimethalin and ethyl parathion, respectively. The silver - nanoparticle-modified electrode was successfully employed for the analysis of pesticides in tap and mineral water (pendimethalin) and in lettuce and honey (ethyl parathion) samples. Pendimethalin recovery was between 94 and 100 %, and ethyl parathion recovery was between 97 and 101 %, indicating no significant matrix interference effects on the analytical results. The accuracy of the electroanalytical methodology using the proposed modified electrode was also compared to that of the UV–vis spectrophotometric method.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700