Water droplet impact on superhydrophobic surfaces with microstructures and hierarchical roughness
详细信息    查看全文
  • 作者:PengFei Hao (1)
    CunJing Lv (1)
    FengLei Niu (2)
    Yu Yu (2)
  • 关键词:impact velocity ; superhydrophobic ; advancing contact angle
  • 刊名:SCIENCE CHINA Physics, Mechanics & Astronomy
  • 出版年:2014
  • 出版时间:July 2014
  • 年:2014
  • 卷:57
  • 期:7
  • 页码:1376-1381
  • 全文大小:
  • 参考文献:1. Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 1997, 202: 1鈥? CrossRef
    2. Patankar A. Mimicking the lotus effect: Influence of double roughness structures and slender pillars. Langmuir, 2004, 20: 8209鈥?214 CrossRef
    3. Sidorenko A, Krupenkin T, Aizenberg J. Controlled switching of the wetting behavior of biomimetic surfaces with hydrogel-supported nanostructures. J Mater Chem, 2008, 18: 3841鈥?846 CrossRef
    4. Chen M H, Hsu T H, Chuang Y J. Dual hierarchical biomimic superhydrophobic surface with three energy states. Appl Phys Lett, 2009, 95(2): 023702 CrossRef
    5. Bhushan B, Jung Y C, Koch K. Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion. Phil Trans R Soc A, 2009, 367: 1631鈥?672 CrossRef
    6. Richard D, Clanet C, Qu茅r茅 D. Surface phenomena 鈥?Contact time of a bouncing drop. Nature, 2002, 417: 811鈥?11 CrossRef
    7. Biance A L, Clanet C, and Qu茅r茅 D. First steps in the spreading of a liquid droplet. Phys Rev E, 2004, 69: 016301 CrossRef
    8. Bartolo D, Josserand C, Bonn D. Singular jets and bubbles in drop impact. Phys Rev Lett, 2006, 96: 124501 CrossRef
    9. Qu茅r茅 D. Wetting and roughness. Ann Rev Mater Res, 2008, 38: 71鈥?9 CrossRef
    10. Jung Y C, Bhushan B. Dynamic effects of bouncing water droplets on superhydrophobic surfaces. Langmuir, 2008, 24: 6262鈥?269 CrossRef
    11. Rioboo R, Vou茅 M, Vaillant A, et al. Drop impact on porous superhydrophobic polymer surfaces. Langmuir, 2008, 24: 14074鈥?4077 CrossRef
    12. Tsai P C, Pacheco S, Pirat C, et al. Drop impact upon micro- and nanostructured superhydrophobic surfaces. Langmuir, 2009, 25: 12293鈥?2298 CrossRef
    13. Antonini C, Amirfazli A, Marengo M. Drop impact and wettability: From hydrophilic to superhydrophobic surfaces. Phys Fluid, 2012, 24: 102104 CrossRef
    14. Castrejon-Pita J R, Betton E S, Kubiak K J, et al. The dynamics of the impact and coalescence of droplets on a solid surface. Biomicrofluidics, 2011, 5: 014112 CrossRef
    15. Brown P S, Berson A, Talbot E L, et al. Impact of picoliter droplets on superhydrophobic surfaces with ultralow spreading ratios. Langmuir, 2011, 27: 13897鈥?3903 CrossRef
    16. Wang Z, Lopez C, Hirsa A, et al. Impact dynamics and rebound of water droplets on superhydrophobic carbon nanotube arrays. Appl Phys Lett, 2007, 91: 023105 CrossRef
    17. Chen L Q, Li Z G. Bouncing droplets on nonsuperhydrophobic surfaces. Phys Rev E, 2010, 82: 016308 CrossRef
    18. Chen L Q, Xiao Z, Philip C H, et al. A comparative study of droplet impact dynamics on a dual-scaled superhydrophobic surface and lotus leaf. Appl Surf Sci, 2011, 257: 8857鈥?863 CrossRef
    19. Wang F C, Feng J T, Zhao Y P. The head-on colliding process of binary liquid droplets at low velocity: High-speed photography experiments and modeling. J Colloid Interface Sci, 2008, 326: 196鈥?00 CrossRef
    20. Wang F C, Yang F, Zhao Y P. Size effect on the coalescence-induced self-propelled droplet. Appl Phys Lett, 2011, 98: 053112 CrossRef
    21. Wang B B, Zhao Y P, Yu T G. Fabrication of novel superhydrophobic surfaces and droplet bouncing behavior 鈥?part 2: water droplet impact experiment on superhydrophobic surfaces constructed using ZnO nanoparticles. J Adhes Sci Technol, 2011, 25: 93鈥?08 CrossRef
    22. Lv C J, Hao P F, Yao Z H, et al. Condensation and jumping relay of droplets on lotus leaf. Appl Phys Lett, 2013, 103: 021601 CrossRef
    23. Reyssat M, P茅pin A, Marty F, et al. Bouncing transitions on microtextured materials. Europhys Lett, 2006, 74: 306鈥?12 CrossRef
    24. Deng T, Varanasi, Kripa K, et al. Nonwetting of impinging droplets on textured surfaces. Appl Phys Lett, 2009, 94: 133109 CrossRef
    25. Bartolo D, Bouamrirene F, Verneuil E, et al. Bouncing or sticky droplets: Impalement transitions on superhydrophobic micropatterned surfaces. Europhys Lett, 2006, 74: 299鈥?05 CrossRef
    26. Lv C J, Yang C, Hao P F, et al. Sliding of Water Droplets on Microstructured Hydrophobic Surfaces. Langmuir, 2010, 26: 8704鈥?708 CrossRef
    27. Lu S, Yao Z H, Hao P F. Drag reduction in ultrahydrophobic channels with micro-nano structured surfaces. Sci China-Phys Mech Astron, 2010, 53: 1298鈥?305 CrossRef
    28. Kim H, Lee C, Kim M H, et al. Drop impact characteristics and structure effects of hydrophobic surfaces with micro- and/or nanoscaled structures. Langmuir, 2012, 28: 11250鈥?1257 CrossRef
    29. Wier K A, McCarthy T J. Condensation on ultrahydrophobic surfaces and its effect on droplet mobility: Ultrahydrophobic surfaces are not always water repellant. Langmuir, 2006, 22: 2433鈥?436 CrossRef
    30. Moulinet S, Bartolo D. Life and death of a fakir droplet: Impalement transitions on superhydrophobic surfaces. Eur Phys J E, 2007, 24: 251鈥?60 CrossRef
    31. Chen L Q, Xiao Z Y, Chan P C H, et al. A comparative study of droplet impact dynamics on a dual-scaled superhydrophobic surface and lotus leaf. Appl Surf Sci, 2011, 257: 8857鈥?863 CrossRef
    32. Xue Y H, Chu S G, Lv P Y, et al. Importance of hierarchical structures in wetting stability on submersed superhydrophobic surfaces. Langmuir, 2012, 28: 9440鈥?450 CrossRef
  • 作者单位:PengFei Hao (1)
    CunJing Lv (1)
    FengLei Niu (2)
    Yu Yu (2)

    1. Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
    2. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, 102206, China
  • ISSN:1869-1927
文摘
Quantitative correlation between the critical impact velocity of droplet and geometry of superhydrophobic surfaces with microstructures is systematically studied. Experimental data shows that the critical impact velocity induced wetting transition of droplet on the superhydrophobic surfaces is strongly determined by the perimeter of single micropillar, the space between the repeat pillars and the advancing contact angle of the sidewall of the micropillars. The proposed model agrees well with the experimental results, and clarifies that the underlying mechanism which is responsible for the superhydrophobic surface with hierarchical roughness could sustain a higher liquid pressure than the surfaces with microstructures.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700