An overview of the switching parameter variation of RRAM
详细信息    查看全文
  • 作者:Meiyun Zhang (1)
    Shibing Long (1)
    Guoming Wang (1)
    Yang Li (1)
    Xiaoxin Xu (1)
    Hongtao Liu (1)
    Ruoyu Liu (1)
    Ming Wang (1)
    Congfei Li (1)
    Pengxiao Sun (1)
    Haitao Sun (1)
    Qi Liu (1)
    Hangbing Lü (1)
    Ming Liu (1)
  • 关键词:Resistive random access memory ; Variation of switching parameters ; Conductive filament ; Percolation model
  • 刊名:Chinese Science Bulletin
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:59
  • 期:36
  • 页码:5324-5337
  • 全文大小:1,274 KB
  • 参考文献:1. Waser R, Dittmann R, Staikov G et al (2009) Redox-based resistive switching memories-nanoionic mechanisms, prospects, and challenges. Adv Mater 21:2632-663
    2. Waser R, Aono M (2007) Nanoionics-based resistive switching memories. Nat Mater 6:833-40
    3. Tang D, Li YH, Zhang GH et al (2013) Single event upset sensitivity of 45 nm FDSOI and SOI FinFET SRAM. Sci China Technol Sci 56:780-85
    4. Sun QP, Aslan A, Li MP et al (2014) Effects of grain size on phase transition behavior of nanocrystalline shape memory alloys. Sci China Technol Sci 57:671-79
    5. Wu GN, Cao KJ, Luo Y et al (2012) Partial discharge characteristics of interturn insulation used for inverter-fed traction motor under bipolar impulses. Sci China Technol Sci 55:2346-354
    6. Sawa A (2008) Resistive switching in transition metal oxides. Mater Today 11:28-6
    7. Xiao X, Li ZY, Chu T et al (2013) Development of silicon photonic devices for optical interconnects. Sci China Technol Sci 56:586-93
    8. Zhou GZ, Wang YX, Liu C et al (2013) On ferroelectric domain polarization switching mechanism subject to an external electric field by simulations with the phase-field method. Sci China Technol Sci 56:1129-138
    9. Yang JJ, Strukov DB, Stewart DR (2013) Memristive devices for computing. Nat Nanotechnol 8:13-4
    10. Lin WP, Liu SJ, Gong T et al (2014) Polymer-based resistive memory materials and devices. Adv Mater 26:570-06
    11. Lanza M (2014) A review on resistive switching in high-k dielectrics: a nanoscale point of view using conductive atomic force microscope. Materials 7:2155-182
    12. Pan F, Chen C, Wang ZS et al (2010) Nonvolatile resistive switching memories-characteristics, mechanisms and challenges. Prog Nat Sci Mater Int 20:1-5
    13. Bao D (2009) Transition metal oxide thin films for nonvolatile resistive random access memory applications. J Ceram Soc Jpn 117:929-34
    14. Zhu XJ, Shang J, Li RW (2012) Resistive switching effects in oxide sandwiched structures. Front Mater Sci 6:1-4
    15. Prakash A, Jana D, Maikap S (2013) TaO / x -based resistive switching memories: prospective and challenges. Nanoscale Res Lett 8:418
    16. Tian XZ, Wang LF, Li XM et al (2013) Recent development of studies on the mechanism of resistive memories in several metal oxides. Sci China Phys Mech Astron 56:2361-369
    17. Zhang K, Long S, Liu Q et al (2011) Progress in rectifying-based RRAM passive crossbar array. Sci China Technol Sci 54:811-18
    18. Shang DS, Sun JR, Shen BG et al (2013) Resistance switching in oxides with inhomogeneous conductivity. Chin Phys B 22:067202
    19. Li Y, Long S, Liu Q et al (2011) An overview of resistive random access memory devices. Chin Sci Bull 56:3072-078
    20. Lee MJ, Lee CB, Lee D et al (2011) A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5?em class="a-plus-plus">x /TaO2?em class="a-plus-plus">x bilayer structures. Nat Mater 10:625-30
    21. Lee HY, Chen PS, Wu TY et al (2009) HfO / x bipolar resistive memory with robust endurance using AlCu as buffer electrode. IEEE Electron Device Lett 30:703-05
    22. Zhao JW, Liu FJ, Sun J et al (2012) Low power consumption bipolar resistive switching characteristics of ZnO-based memory devices. Chin Opt Lett 10:013102
    23. Bai Y, Wu HQ, Zhang Y et al (2013) Low power W:AlO / x /WO / x bilayer resistive switching structure based on conductive filament formation and rupture mechanism. Appl Phys Lett 102:173503
    24. Zhang LJ, Huang R, Gao DJ et al (2009) Unipolar resistive switch based on silicon monoxide realized by CMOS technology. IEEE Electron Device Lett 30:870-72
    25. Huang R, Zhang LJ, Gao DJ et al (2011) Resistive switching of silicon-rich-oxide featuring high compatibility with CMOS technology for 3D stackable and embedded applications. Appl Phys A 102:927-31
    26. Guan XM, Yu SM, Wong HSP (2012) On the switching parameter variation of metal-oxide RRAM-part I: physical modeling and simulation methodology. IEEE Trans Electron Devices 59:1172-182
    27. Long SB, Cagli C, Ielmini D et al (2012) Analysis and modeling of resistive switching statistics. J Appl Phys 111:074508
    28. Long SB, Liu M, Su?é J et al (2013) Compact analytical models for the SET and RESET switching statistics of RRAM inspired in the cell-based percolation model of gate dielectric breakdown. Proc Int Reliab Phys Symp 5A.6.1-A.6.8
    29. Yang Y, Gao P, Gaba S et al (2012) Observation of conducting filament growth in nanoscale resistive memories. Nat Commun 3:732
    30. Rozenberg MJ, Inoue IH, Sànchez MJ (2004) Nonvolatile memory with multilevel switching: a basic model. Phys Rev Lett 92:178302
    31. Lee JS, Lee SB, Chang SH et al (2010) Scali
  • 作者单位:Meiyun Zhang (1)
    Shibing Long (1)
    Guoming Wang (1)
    Yang Li (1)
    Xiaoxin Xu (1)
    Hongtao Liu (1)
    Ruoyu Liu (1)
    Ming Wang (1)
    Congfei Li (1)
    Pengxiao Sun (1)
    Haitao Sun (1)
    Qi Liu (1)
    Hangbing Lü (1)
    Ming Liu (1)

    1. Laboratory of Nanofabrication and Novel Device Integration, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
  • ISSN:1861-9541
文摘
Resistive random access memory (RRAM) has been considered as one of the most promising candidates for next-generation nonvolatile memory, due to its advantages of simple device structure, excellent scalability, fast operation speed and low power consumption. Deeply understanding the physical mechanism and effectively controlling the statistical variation of switching parameters are the basis of fostering RRAM into commercial application. In this paper, based on the deep understanding on the mechanism of the formation and rupture of conductive filament, we summarize the methods of analyzing and modeling the statistics of switching parameters such as SET/RESET voltage, current, speed or time. Then, we analyze the distributions of switching parameters and the influencing factors. Additionally, we also sum up the analytical model of resistive switching statistics composed of the cell-based percolation model and SET/RESET switching dynamics. The results of the model can successfully explain the experimental distributions of switching parameters of the NiO- and HfO2-based RRAM devices. The model also provides theoretical guide on how to improve the uniformity and reliability such as disturb immunity. Finally, some experimental approaches to improve the uniformity of switching parameters are discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700