Recombinant strains of Saccharomyces cerevisiae for ethanol production from plant biomass
详细信息    查看全文
  • 作者:A. S. Rozanov ; A. V. Kotenko ; I. R. Akberdin…
  • 关键词:Saccharomyces cerevisiae ; lignocellulosic biomass ; xylose utilization ; bioethanol ; producer strains ; genetic modification
  • 刊名:Russian Journal of Genetics: Applied Research
  • 出版年:2015
  • 出版时间:July 2015
  • 年:2015
  • 卷:5
  • 期:4
  • 页码:375-382
  • 全文大小:180 KB
  • 参考文献:Ahmed, S., Riaz, S., and Jamil, A., Molecular cloning of fungal xylanases: an overview, Appl. Microbiol. Biotechnol., 2009, vol. 84, no. 1, pp. 19鈥?5.View Article PubMed
    Almeida, J.R., Modig, T., Petersson, A., et al., Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae, J. Chem. Technol. Biotechnol., 2007, vol. 82, no. 4, pp. 340鈥?49.View Article
    Baek, S.H., Kim, S., Lee, K., et al., Cellulosic ethanol production by combination of cellulase-displaying yeast cells, Enzyme Microb. Technol., 2012, vol. 51, no. 6, pp. 366鈥?72.View Article PubMed
    Bera, A., Ho, N., Khan, A., and Sedlak, M., A genetic overhaul of Saccharomyces cerevisiae 424A (LNH-ST) to improve xylose fermentation, J. industrial microbiology biotechnology, 2011, vol. 38, no. 5, pp. 617鈥?26.View Article PubMed
    脟akar, Z., Seker, U., Tamerler, C., et al., Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae, FEMS Yeast Res., 2005, vol. 5, nos. 6鈥?, pp. 569鈥?78.View Article PubMed
    脟akar, Z., Turanli, Y., Alkim, C., and Yilmaz, 脺., Evolutionary engineering of Saccharomyces cerevisiae for improved industrially important properties, FEMS Yeast Res., 2012, vol. 12, no. 2, pp. 171鈥?82.View Article PubMed
    脟elik, E. and 脟alik, P., Production of recombinant proteins by yeast cells, Biotechnol. Adv., 2012, vol. 30, no. 5, pp. 1108鈥?118.View Article PubMed
    Chen, X., Meng, K., Shi, P., et al., High-level expression of a novel Penicillium endo-1, 3 (4)-D-glucanase with high specific activity in Pichia pastoris, J. Industr. Microbiol. Biotechnol., 2012, vol. 39, no. 6, pp. 869鈥?76.View Article
    Cho, K.M., Yoo, Y.J., and Kang, H.S., 未-integration of endo/exoglucanase and 尾-glucosidase genes into the yeast chromosomes for direct conversion of cellulose to ethanol, Enzyme Microb. Technol., 1999, vol. 25, no. 1, pp. 23鈥?0.View Article
    Deng, X. and Ho, N., Xylulokinase activity in various yeasts including Saccharomyces cerevisiae containing the cloned xylulokinase gene, Appl. Biochem. Biotechnol., 1990, vol. 24, no. 1, pp. 193鈥?99.View Article PubMed
    Fiaux, J., Xakar, Z.P., Sonderegger, M., et al., Metabolicflux profiling of the yeasts Saccharomyces cerevisiae and Pichia stipitis, Eukaryotic cell, 2003, vol. 2, no. 1, pp. 170鈥?80.PubMed Central View Article PubMed
    De Figueiredo, V., de Mello, V., Reis, V., et al., Functional expression of Burkholderia cenocepacia xylose isomerase in yeast increases ethanol production from a glucosexylose blend, Bioresource Technol., 2013, vol. 1, pp. 792鈥?96.View Article
    Fujii, T., Yu, G., Matsushika, A., et al., Ethanol production from xylo-oligosaccharides by xylose-fermenting Saccharomyces cerevisiae expressing -xylosidase, Biosci. Biotechnol. Biochem., 2011, vol. 75, no. 6, pp. 1140鈥?146.View Article PubMed
    Geddes, C.C., Nieves, I.U., and Ingram, L.O., Advances in ethanol production, Curr. Opin. Biotechnol., 2011, vol. 22, no. 3, pp. 312鈥?19.View Article PubMed
    Goyal, G., Tsai, S.L., Madan, B., et al., Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome, Microb. Cell Fact., 2011, vol. 10, p. 89.PubMed Central View Article PubMed
    Gurgu, L., Polaina, J., and Marin-Navarro, J., Fermentation of cellobiose to ethanol by industrial Saccharomyces strains carrying the 尾-glucosidase gene (BGL 1) from Saccharomycopsis fibuligera, Bioresource Technol., 2011, vol. 1, no. 8, pp. 5229鈥?236.View Article
    Hector, R.E., Qureshi, N., Hughes, S., et al., Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption, Appl. Microbiol. Biotechnol., 2008, vol. 80, no. 4, pp. 675鈥?84.View Article PubMed
    Ilm茅n, M., Den, HaanR., Brevnova, E., et al., High level secretion of cellobiohydrolases by Saccharomyces cerevisiae, Biotechnol. Biofuels, 2011, vol. 4, p. 30.PubMed Central View Article PubMed
    Inokuma, K., Hasunuma, T., and Kondo, A., Efficient yeast cell surface display of exo-and endo-cellulase using the SED1 anchoring region and its original promoter, Biotechnol. Biofuels, 2014, vol. 7, no. 1, p. 8.PubMed Central View Article PubMed
    Jayaram, V., Cuyvers, S., Verstrepen, K., et al., Succinic acid in levels produced by yeast (Saccharomyces cerevisiae) during fermentation strongly impacts wheat bread dough properties, Food Chem., 2014, vol. 1, pp. 421鈥?28.View Article
    Karaoglan, M., Yildiz, H., and Inan, M., Screening of signal sequences for extracellular production of Aspergillus niger xylanase in Pichia pastoris, Biochem. Eng. J., 2014.
    Katahira, S., Fujita, Y., Mizuike, A., et al., Construction of a xylan-fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells, Appl. Environ. Microbiol., 2004, vol. 70, no. 9, pp. 5407鈥?414.PubMed Central View Article PubMed
    Katahira, S., Ito, M., Takema, H., et al., Improvement of ethanol productivity during xylose and glucose co-fermentation by xylose-assimilating S. cerevisiae via expression of glucose transporter Sut1, Enzyme Microb. Technol., 2008, vol. 43, no. 2, pp. 115鈥?19.View Article
    Khattab, S., Saimura, M., and Kodaki, T., Boost in bioethanol production using recombinant Saccharomyces cerevisiae with mutated strictly NADPH-dependent xylose reductase and NADP-dependent xylitol dehydrogenase, J. Biotechnol., 2013, vol. 165, no. 3, pp. 153鈥?56.View Article PubMed
    Kim, S., Skerker, J.M., Kang, W., et al., Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae, PloS one, 2013a, vol. 8, no. 2, p. e57048.View Article PubMed
    Kim, S., Lee, K., Kong, I., et al., Construction of an efficient xylose-fermenting diploid Saccharomyces cerevisiae strain through mating of two engineered haploid strains capable of xylose assimilation, J. Biotechnol., 2013b, vol. 164, no. 1, pp. 105鈥?11.View Article PubMed
    Kirikyali, N. and Connerton, I.F., Heterologous expression and kinetic characterisation of Neurospora crassa 尾-xylosidase in Pichia pastoris, Enzyme Microb. Technol., 2014, vol. 57, pp. 63鈥?8.View Article PubMed
    Kitagawa, T., Kohda, K., Tokuhiro, K., et al., Identification of genes that enhance cellulase protein production in yeast, J. Biotechnol., 2011, vol. 151, no. 2, pp. 194鈥?03.View Article PubMed
    K枚tter, P. and Ciriacy, M., Xylose fermentation by Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol., 1993, vol. 38, no. 6, pp. 776鈥?83.View Article
    K枚tter, P., Amore, R., Hollenberg, C.P., and Ciriacy, M., Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant, Curr. Genet., 1990, vol. 18, no. 6, pp. 493鈥?00.View Article PubMed
    Kruckeberg, A.L., The hexose transporter family of Saccharomyces cerevisiae, Arch. Microbiol., 1996, vol. 166, no. 5, pp. 283鈥?92.View Article PubMed
    Kuyper, M., Harhangi, H.R., Stave, A., et al., High level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae?, FEMS Yeast Res., 2003, vol. 4, no. 1, pp. 69鈥?8.View Article PubMed
    Kuyper, M., Winkler, A., Dijken, J., and Pronk, J., Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle, FEMS yeast research, 2004, vol. 4, no. 6, pp. 655鈥?64.View Article PubMed
    Kuyper, M., Hartog, M., Toirkens, M., et al., Metabolic engineering of a xylose isomerase expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation, FEMS Yeast Res., 2005a, vol. 5, nos. 4鈥?, pp. 399鈥?09.View Article PubMed
    Kuyper, M., Toirkens, M., Diderich, J., et al., Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain, FEMS Yeast Res., 2005b, vol. 5, no. 10, pp. 925鈥?34.View Article PubMed
    Lee, S., Kodaki, T., Park, Y., et al., Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae, J. Biotechnol., 2012, vol. 158.
    Lin, Y. and Tanaka, S., Ethanol fermentation from biomass resources: current state and prospects, Appl. Microbiol. Biotechnol., 2006, vol. 69, no. 6, pp. 627鈥?42.View Article PubMed
    Liu, E. and Hu, Y., Construction of a xylose-fermenting Saccharomyces cerevisiae strain by combined approaches of genetic engineering, chemical mutagenesis and evolutionary adaptation, Biochem. Engin. J., 2010, vol. 48, no. 2, pp. 204鈥?10.View Article
    Lu, C. and Jeffries, T., Shuffling of promoters for multiple genes to optimize xylose fermentation in an engineered Saccharomyces cerevisiae strain, Appl. Environ. Microbiol., 2007, vol. 73, no. 19, pp. 6072鈥?077.PubMed Central View Article PubMed
    Madhavan, A., Tamalampudi, S., Ushida, K., et al., Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol, Appl. Microbiol. Biotechnol., 2009, vol. 82, no. 6, pp. 1067鈥?078.View Article PubMed
    Matano, Y., Hasunuma, T., and Kondo, A., Display of cellulases on the cell surface of Saccharomyces cerevisiae for high yield ethanol production from high-solid lignocellulosic biomass, Bioresource Technol., 2012, vol. 1, pp. 128鈥?33.View Article
    Matsushika, A., Inoue, H., Kodaki, T., and Sawayama, S., Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives, Appl. Microbiol. Biotechnol., 2009, vol. 84, no. 1, pp. 37鈥?3.View Article PubMed
    Mimitsuka, T., Sawai, K., Kobayashi, K., et al., Production of D-lactic acid in a continuous membrane integrated fermentation reactor by genetically modified Saccharomyces cerevisiae: enhancement in D-lactic acid carbon yield, J. Biosci. Bioeng., 2014.
    Mormeneo, M., Pastor, F., and Zueco, J., Efficient expression of a paenibacillus barcinonensis endoglucanase in Saccharomyces cerevisiae, J. Industr. Microbiol. Biotechnol., 2012, vol. 39, no. 1, pp. 115鈥?23.View Article
    Nakatani, Y., Yamada, R., Ogino, C., and Kondo, A., Synergetic effect of yeast cell-surface expression of cellulase and expansin-like protein on direct ethanol production from cellulose, Microb. Cell Fact., 2013, vol. 12, p. 66.PubMed Central View Article PubMed
    Ojeda, K., S谩nchez, E., El-Halwagi, M., and Kafarov, V., Exergy analysis and process integration of bioethanol production from acid pre-treated biomass: comparison of SHF, SSF and SSCF pathways, Chem. Eng. J., 2011, vol. 176, pp. 195鈥?01.View Article
    Ota, M., Sakuragi, H., Morisaka, H., et al., Display of Clostridium cellulovorans xylose isomerase on the cell surface of Saccharomyces cerevisiae and its direct application to xylose fermentation, Biotechnol. Progress, 2013, vol. 29, no. 2, pp. 346鈥?51.View Article
    Runquist, D. Fonseca, C., et al., Expression of the gxf1 transporter from Candida intermedia improves fermentation performance in recombinant xylose-utilizing Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol., 2009, vol. 82, no. 1, pp. 123鈥?30.View Article PubMed
    Runquist, D., Hahn-Hagerdal, B., and Radstrom, P., Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae, Biotechnol. Biofuels, 2010, vol. 3, no. 5.
    Salusj盲rvi, L., Kaunisto, S., Holmstr枚m, S., et al., Overexpression of NADH-dependent fumarate reductase improves D-xylose fermentation in recombinant Saccharomyces cerevisiae, J. Industr. Microbiol. Biotechnol., 2013, vol. 40, no. 12, pp. 1383鈥?392.View Article
    Sauer, U., Evolutionary engineering of industrially important microbial phenotypes, in Metabolic Engineering, Berlin: Springer, 2001, pp. 129鈥?69.View Article
    Sonderegger, M. and Sauer, U., Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose, Appl. Environ. Microbiol., 2003, vol. 69, no. 4, pp. 1990鈥?998.PubMed Central View Article PubMed
    Steen, E.J., Chan, R., Prasad, N., et al., Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol, Microb. Cell Fact., 2008, vol. 7, no. 1, p. 36.PubMed Central View Article PubMed
    Sun, J., Wen, F., Si, T., et al., Direct conversion of xylan to ethanol by recombinant Saccharomyces cerevisiae strains displaying an engineered minihemicellulosome, Appl. Environ. Microbiol., 2012, vol. 78, no. 11, pp. 3837鈥?845.PubMed Central View Article PubMed
    Suzuki, H., Imaeda, T., Kitagawa, T., and Kohda, K., Deglycosylation of cellulosomal enzyme enhances cellulosome assembly in Saccharomyces cerevisiae, J. Biotechnol., 2012, vol. 157, no. 1, pp. 64鈥?0.View Article PubMed
    Walfridsson, M., Bao, X., Anderlund, M., et al., Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase, Appl. Environ. Microbiol., 1996, vol. 62, no. 12, pp. 4648鈥?654.PubMed Central PubMed
    Wang, P. and Schneider, H., Growth of yeasts on D-xylulose, Canadian J. Microbiol., 1980, vol. 26, no. 9, pp. 1165鈥?168.View Article
    Wang, T.Y., Huang, C.J., Chen, H.L., et al., Systematic screening of glycosylation-and trafficking-associated gene knockouts in Saccharomyces cerevisiae identifies mutants with improved heterologous exocellulase activity and host secretion, BMC Biotechnol., 2013, vol. 13, no. 1, p. 71.PubMed Central View Article PubMed
    Wilde, C., Gold, N.D., Bawa, N., et al., Expression of a library of fungal 尾-glucosidases in Saccharomyces cerevisiae for the development of a biomass fermenting strain, Appl. Microbiol. Biotechnol., 2012, vol. 95, no. 3, pp. 647鈥?59.View Article PubMed
    Van Wyk, N., Den Haan, R., and Van Zyl, W.H., Heterologous co-production of Thermobifida fusca Cel9A with other cellulases in Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol., 2010, vol. 87, no. 5, pp. 1813鈥?820.View Article PubMed
    Xu, L., Shen, Y., Hou, J., et al., Promotion of extracellular activity of cellobiohydrolase I from Trichoderma reesei by protein glycosylation engineering in Saccharomyces cerevisiae, Curr. Synthetic Sys. Biol., 2014, vol. 2, no. 111, p. 1000111.
    Yamada, R., Taniguchi, N., Tanaka, T., et al., Direct ethanol production from cellulosic materials using a diploid strain of Saccharomyces cerevisiae with optimized cellulose expression, Biotechnol. Biofuels, 2011, vol. 4, no. 8.
    Young, E.M., Tong, A., Bui, H., et al., Rewiring yeast sugar transporter preference through modifying a conserved protein motif, Proc. Natl. Acad. Sci. USA, 2014, vol. 111, no. 1, pp. 131鈥?36.PubMed Central View Article PubMed
    Yu, J., Singh, D., Liu, N., et al., Construction of a glucose and xylose co-fermenting industrial Saccharomyces cerevisiae by expression of codon-optimized fungal xylose isomerase, J. Biobased Materials Bioenergy, 2011, vol. 5, no. 3, pp. 357鈥?64.View Article
    Zhou, H., Cheng, J.S., Wang, B.L., et al., Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae, Metab. Eng., 2012, vol. 14, no. 6, pp. 611鈥?22.View Article PubMed
  • 作者单位:A. S. Rozanov (1)
    A. V. Kotenko (1)
    I. R. Akberdin (1)
    S. E. Peltek (1)

    1. Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
  • 刊物主题:Human Genetics;
  • 出版者:Springer US
  • ISSN:2079-0600
文摘
Saccharomyces cerevisiae is the most convenient organism widely used for ethanol production from sugars in industry thanks to the high rates of growth and ethanol fermentation and biosynthesis under unaerobic conditions, as well as its tolerance to a high ethanol concentration and low pH level. Lignocellulosic biomass is considered to be the most advantageous source of sugars. The sugar which can be obtained from it is the combination of hexoses and pentoses. However, the S. cerevisiae strains in current use are poorly adapted to the fermentation of pentasaccharides, which make it imperative to optimize the metabolic processes in the currently available bioethanol producers for pentasaccharides utilization. This work reviews the approaches which were currently developed to address this issue using recombinant strains of S. cerevisiae.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700