Energy transport mechanism in the form of proton soliton in a one-dimensional hydrogen-bonded polypeptide chain
详细信息    查看全文
  • 作者:L. Kavitha ; R. Priya ; N. Ayyappan ; D. Gopi ; S. Jayanthi
  • 关键词:Hydrogen bond ; Proton transfer ; Solitons
  • 刊名:Journal of Biological Physics
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:42
  • 期:1
  • 页码:9-31
  • 全文大小:1,157 KB
  • 参考文献:1.Pang, X.F., Feng, Y.J., Luo, Y.H.: Influences of quantum and disorder effects on solitons excited in protein molecules in improved model. Commun. Theor. Phys. (Beijing, China) 43(1), 367–376 (2005)ADS
    2.Kavitha, L., Muniyappan, A., Prabhu, A., Zdravkovic, S., Jayanthi, S., Gopi, D.: Nano breathers and molecular dynamics simulations in hydrogen-bonded chains. J. Biol. Phys. 39, 15–35 (2013)CrossRef
    3.Kavitha, L., Venkatesh, M., Jayanthi, S., Gopi, D.: Propagation of proton solitons in hydrogen-bonded chains with an asymmetric double-well potential. Phys. Scr. 86, 025403 (2012)ADS CrossRef
    4.Kavitha, L., Parasuraman, E., Venkatesh, M., Mohamadou, A., Gopi, D.: Breather-like protonic tunneling in a discrete hydrogen bonded chain with heavy-ionic interactions. Phys. Scr. 87, 035007 (2013)ADS CrossRef
    5.Kavitha, L., Jayanthi, S., Muniyappan, A., Gopi, D.: Protonic transport through solitons in hydrogen-bonded systems. Phys. Scr. 84, 035803 (2011)ADS CrossRef
    6.Pethig, R: A synopsis of calculations of the energy band structures for protein molecules. J. Biol. Phys. 6, 1–28 (1978)CrossRef
    7.Schulz, G.E., Schirmar, R.H.: Principles of Protein structure. Springer, New York (1979)CrossRef
    8.Davydov, A.S.: Biology and Quantum Mechanics. Pergamon, New York (1982)
    9.Ho, M.-W., Popp, F.A., Warnke, U.: Bioelectrodynamics and Boicommunication. World Scientific (1994)
    10.Careri, G., Buontempo, U., Galluzi, F., Scott, A. C., Gratton, E., Erramilli, S.: Spectroscopic evidence for Davydov-like solitons in acetanilide. Phys. Rev. B 30, 4689–4702 (1984)ADS CrossRef
    11.Barthes, M., Kellouai, H., Page, G., Moret, J., Johnson, S.W., Eckert, J.: H-localized mode in chains of hydrogen-bonded amide groups. Physica D 68, 45–50 (1993)ADS CrossRef
    12.Scott, A.C.: Davydov’s soliton revisited. Physica D 51, 333–342 (1991)ADS CrossRef MATH
    13.Peyrard, M. (ed.): Nonlinear Excitations in Biomolecules. Springer, Berlin (1995)
    14.Cruzeiro, L.: The Davydov/Scott model for energy storage and transport in proteins. J. Biol. Phys. 35, 43–55 (2009)CrossRef
    15.Davydov, A.S.: The theory of contraction of proteins under their excitation. J. Theor. Biol. 38, 559–569 (1973)CrossRef
    16.Davydov, A.S.: Solitons and energy transfer along protein molecules. J. Theor. Biol. 66(2), 379–387 (1977)CrossRef
    17.Davydov, A.S.: Solitons in Molecular Systems. Phys. Scr. 20, 387–394 (1979)ADS CrossRef MATH
    18.Pouthier, V.: Two vibron bound states in α-helix proteins: the interplay between the intramolecular anhorminicity and the strong vibron phonon coupling. Phys. Rev. E 68, 021909 (2003)ADS CrossRef
    19.Scott, A.: Davydov’s soliton. Phys. Rep. 217, 1–67 (1992)ADS CrossRef
    20.Takeno, S.: Vibron solitons in one-dimensional molecular crystals. Prog. Theor. Phys. 71(2), 395–398 (1984)ADS MathSciNet CrossRef
    21.Takeno, S.: Vibron solitons and coherent polarization in an exactly tractable oscillator-lattice system–applications to solitons in α helical proteins and Fröhlich’s idea of biological activity. Prog. Theor. Phys. 73, 853–873 (1985)ADS CrossRef
    22.Goichuk, I. A. , Kukhtin, V.V., Petrov, E.G.: Orientational oscillations of the peptide groups of an α-helix. J. Biol. Phys. 17, 95–102 (1989)CrossRef
    23.Takeno, S.: Supersonic vibron solitons and their possible existence in polypeptides. J. Biol. Phys. 24, 185–199 (1999)CrossRef
    24.Daniel, M., Deepamala, K.: Davydov soliton in alpha helical proteins: higher-order and discreteness effects. Physica A 221, 241–255 (1995)ADS CrossRef
    25.Zolotariuk, A.V., Savin, A.V.: Solitons in molecular chains with intramolecular nonlinear interactions. Physica D 46, 295–314 (1990)ADS MathSciNet CrossRef MATH
    26.Xu, J.-Z.: Soliton dynamics in the helix polypeptide chains. Chaos Solitons Fractals 11, 779–790 (2000)ADS MathSciNet CrossRef MATH
    27.Schlag, E.W., Sheu, S.-Y., Yang, D.-Y, Selzle, H.L., Lin, S.H.: Theory of charge transport in polypeptides. J. Phys. Chem. B 104(52), 7790–7794 (2000)CrossRef
    28.Cherstvy, A.G., Kornyshev, A.A., Leikin, S.: Torsional deformation of double helix in interaction and aggregation of DNA. J. Phys. Chem. B 108(20), 6508 (2004)CrossRef
    29.Kornyshev, A.A., Wynveen, A.: Nonlinear effects in the torsional adjustment of interacting DNA. Phys. Rev. E 69, 041905 (2004)ADS CrossRef
    30.Takeno, S.: Quantum theory of vibron solitons-coherent states of a vibron-phonon system and self-localized modes-. J. Phys. Soc. Jpn. 59, 3127–3141 (1990)ADS CrossRef
    31.Scott, A.C.: Dynamics of Davydov solitons. Phys. Rev. A 26, 578–595 (1982)ADS MathSciNet CrossRef
    32.Yomosa, S.: Toda-Lattice solitons in α-helical proteins. J. Phys. Soc. Japan 53, 3692–3698 (1984)ADS CrossRef
    33.Ichinose, S., Minato, T.: Dynamics of the protons in alpha-helical proteins. Chaos Solitons and Fractals 2, 147–154 (1994)ADS CrossRef
    34.Magazzu, L., Valenti, D., Caldara, P., La Cognata, A., Spagnolo, B., Falci, G.: Transient dynamics and asymptotic populations in a driven metastable quantum system. Acta Phys. Pol. B 44, 1185–1192 (2013)ADS MathSciNet CrossRef
    35.Caldara, P., La Cognata, A., Valenti, D., Spagnolo, B., Berritta, M., Paladino, E., Falci, G.: Dynamics of a quantum particle in asymmetric bistable potential with environmental noise. Inter. J. Quan. Info. 9, 119–127 (2011)CrossRef MATH
    36.Spagnolo, B., Caldara, P., La Cognata, A., Valenti, D., Fiasconaro, A., Dubkov, A.A., Falci, G.: The bistable potential: an archetype for classical and quantum systems. Inter. J. Modern Physics B 26, 1241006 (2012)ADS CrossRef
    37.Tomchuk, P.M., Luk’yanets, S.P.: Coherent tunnel repolarization of a short hydrogen-bonded chain. J. Mol. Struct. 513, 35–45 (1999)ADS CrossRef
    38.Kavitha, L., Daniel, M.: Integrability and soliton in a classical one-dimensional site-dependent biquadratic Heisenberg spin chain and the effect of nonlinear inhomogeneity. J. Phys. A: Math. Gen. 36, 10471–10492 (2003)ADS MathSciNet CrossRef MATH
    39.Kodama, Y., Ablowitz, M.J.: Perturbations of solitons and solitary waves. Stud. Appl. Math. 64, 225–245 (1981)ADS MathSciNet CrossRef MATH
    40.Kavitha, L., Sathishkumar, P., Gopi, D.: Magnetization reversal through flipping solitons under the localized inhomogeneity. J. Phys. A: Math. Theor. 43, 125201 (2010)ADS MathSciNet CrossRef
    41.Kavitha, L., Saravanan, M., Sathishkumar, P.: Magnetization reversal through a soliton in a site-dependent weak ferromagnet. Chin. J. Phys. 51(2), 265–292 (2013)MathSciNet
    42.Kavitha, L., Saravanan, M., Gopi, D.: Propagation of an electromagnetic soliton in an anisotropic biquadratic ferromagnetic medium. Chin. Phys. B 22(3), 030512 (2013)ADS MathSciNet CrossRef
    43.Kavitha, L., Saravanan, M., Srividya, B., Gopi, D.: Breatherlike electromagnetic wave propagation in an antiferromagnetic medium with Dzyaloshinsky-Moriya interaction. Phy. Rev. E 84, 066608 (2011)ADS CrossRef
    44.Lomdahl , P.S., Kerr, W.C.: Do Davydov solitons exist at 300K? Phys. Rev. Lett. 55, 1235 (1985)ADS CrossRef
    45.Pang, X.F.: Improvement of the Davydov theory of bioenergy transport in protein molecular systems. Phys. Rev. E 62, 6989–6998 (2000)ADS CrossRef
    46.Careri, G., Buontempo, U., Carta, F, Gratton, E., Scott, A.C.: Infrared absorption in acetanilide by solitons. Phys. Rev. Lett. 51, 304–307 (1983)ADS CrossRef
  • 作者单位:L. Kavitha (1) (2)
    R. Priya (3)
    N. Ayyappan (1)
    D. Gopi (4) (5)
    S. Jayanthi (3)

    1. Department of Physics, School of Basic and Applied Sciences, Central University of Tamilnadu, Thiruvarur, 610 101, Tamilnadu, India
    2. The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
    3. Department of Physics, Periyar University, Salem, 636 011, Tamilnadu, India
    4. Center for Nanoscience and Nanotechnology, Periyar University, Salem, 636 011, Tamilnadu, India
    5. Department of Chemistry, Periyar University, Salem, 636 011, Tamilnadu, India
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Biophysics and Biomedical Physics
    Condensed Matter
    Statistical Physics
    Polymer Sciences
    Bioinformatics
    Neurosciences
  • 出版者:Springer Netherlands
  • ISSN:1573-0689
文摘
The dynamics of protons in a one-dimensional hydrogen-bonded (HB) polypeptide chain (PC) is investigated theoretically. A new Hamiltonian is formulated with the inclusion of higher-order molecular interactions between peptide groups (PGs). The wave function of the excitation state of a single particle is replaced by a new wave function of a two-quanta quasi-coherent state. The dynamics is governed by a higher-order nonlinear Schrödinger equation and the energy transport is performed by the proton soliton. A nonlinear multiple-scale perturbation analysis has been performed and the evolution of soliton parameters such as velocity and amplitude is explored numerically. The proton soliton is thermally stable and very robust against these perturbations. The energy transport by the proton soliton is more appropriate to understand the mechanism of energy transfer in biological processes such as muscle contraction, DNA replication, and neuro-electric pulse transfer on biomembranes. Keywords Hydrogen bond Proton transfer Solitons

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700