Assessing Antibacterial Potential of Components of Phyllomedusa distincta Skin and its Associated Dermal Microbiota
详细信息    查看全文
  • 作者:Ananda Brito de Assis ; Cristiane dos Santos…
  • 关键词:Atlantic Forest ; Phyllomedusa ; Frog microbiota ; Skin antimicrobial peptides
  • 刊名:Journal of Chemical Ecology
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:42
  • 期:2
  • 页码:139-148
  • 全文大小:734 KB
  • 参考文献:Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRef PubMed
    Ashcroft JW, Zalinger ZB, Bevier CR, Fekete FA (2007) Antimicrobial properties of two purified skin peptides from the mink frog (Rana septentrionalis) against bacteria isolated from the natural habitat. Comp Biochem Physiol Part C Toxicol Pharmacol 146:325–330CrossRef
    Austin RM (2000) Cutaneous microbial flora and antibiosis in Plethodon ventralis. In: Bruce RC, Jaeger RG, Houck LD (eds) The biology of Plethodontid salamanders. Kluwer Academic / Plenum Publishers, New York, pp 451–462CrossRef
    Batista C, da Silva L, Sebben A, Scaloni A, Ferrara L, Paiva G, Olamendi-Portugal T, Possani L, Bloch C (1999) Antimicrobial peptides from the Brazilian frog Phyllomedusa distincta. Peptides 20:679–686CrossRef PubMed
    Batista CVF, Scaloni A, Rigden DJ, Silva LR, Romero AR, Dukor R, Sebben A, Talamo F, Bloch C (2001) A novel heterodimeric antimicrobial peptide from the tree-frog Phyllomedusa distincta. FEBS Lett 494:85–89CrossRef PubMed
    Bettin C, Greven H (1986) Bacteria on the skin of Salamandra salamandra (L.) (Amphibia, Urodela) with notes on their possible significance. Zool Anz 216:267–270
    Blaustein A, Kiesecker J (2002) Complexity in conservation: lessons from the global decline of amphibian populations. Ecol Lett 5:597–608CrossRef
    Calderon LD, Silva ADE, Ciancaglini P, Stabeli RG (2011) Antimicrobial peptides from Phyllomedusa frogs: from biomolecular diversity to potential nanotechnologic medical applications. Amino Acids 40:29–49CrossRef
    Campos FP (2001) O Parque Estadual Intervales e o serviço de áreas naturais protegidas. In: Leonel C (ed) Intervales: Fundação para conservação e a produção florestal do estado de São Paulo. Secretaria de Estado do Meio Ambiente de São Paulo, São Paulo, pp 11–19
    Castanho L (1994) Historia natural de Phyllomedusa distincta na Mata Atlântica de Sete Barras, Estado de São Paulo (Amphibia, Anura, Hylidae): Universidade Estadual de Campinas
    Clarke BT (1997) The natural history of amphibian skin secretions, their normal functioning and potential medical applications. Biol Rev Camb Philos Soc 72:365–379CrossRef PubMed
    Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM et al (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37(Database):D141–D145CrossRef PubMed PubMedCentral
    Development Core Team R (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
    Feder ME, Burggren WW (1992) Environmental physiology of the Amphibians. The University of Chicago Press, Chicago
    Flechas SV, Sarmiento C, Cardenas ME, Medina EM, Restrepo S, Amezquita A (2012) Surviving chytridiomycosis: differential anti-Batrachochytrium dendrobatidis activity in bacterial isolates from three lowland species of Atelopus. PLoS One 7, e44832CrossRef PubMed PubMedCentral
    Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    Harris RN, James TY, Lauer A, Simon MA, Patel A (2006) Amphibian pathogen Batrachochytrium dendrobatidis is inhibited by the cutaneous bacteria of amphibian species. EcoHealth 3:53–56CrossRef
    Harris RN, Brucker RM, Walke JB, Becker MH, Schwantes CR, Flaherty DC, Lam BA, Woodhams DC, Briggs CJ, Vredenburg VT et al (2009) Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. ISME J 3:818–824CrossRef PubMed
    Houlahan JE, Findlay CS, Schmidt BR, Meyer AH, Kuzmin SL (2000) Quantitative evidence for global amphibian population declines. Nature 404:752–755CrossRef PubMed
    Kado CI (2006) Erwinia and related genera. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The Prokaryotes – a handbook of the biology of bacteria, 3rd edn. Springer, New York, pp 443–450
    Kueneman JG, Parfrey LW, Woodhams DC, Archer HM, Knight R, McKenzie VJ (2014) The amphibian skin-associated microbiome across species, space and life history stages. Mol Ecol 23:1238–1250CrossRef PubMed
    Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306CrossRef PubMed PubMedCentral
    Lam BA, Walke JB, Vredenburg VT, Harris RN (2010) Proportion of individuals with anti-Batrachochytrium dendrobatidis skin bacteria is associated with population persistence in the frog Rana muscosa. Biol Conserv 143:529–531CrossRef
    Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackenbrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–147
    Lauer A, Simon MA, Banning JL, Lam BA, Harris RN (2008) Diversity of cutaneous bacteria with antifungal activity isolated from female four-toed salamanders. ISME J 2:145–157CrossRef PubMed
    Lips K (2014) A tale of two lineages: unexpected, long-term persistence of the amphibian-killing fungus in Brazil. Mol Ecol 23:747–749CrossRef PubMed
    Loudon AH, Woodhams DC, Parfrey LW, Archer H, Knight R, McKenzie V, Harris RN (2014) Microbial community dynamics and effect of environmental microbial reservoirs on red-backed salamanders (Plethodon cinereus). ISME J 8:830–840CrossRef PubMed PubMedCentral
    Marani MM, Dourado FS, Quelemes PV, de Araujo AR, Perfeito ML, Barbosa EA, Veras LM, Coelho AL, Andrade EB, Eaton P et al (2015) Characterization and biological activities of ocellatin peptides from the skin secretion of the frog Leptodactylus pustulatus. J Nat Prod 78:1495–1504CrossRef PubMed
    McKenzie VJ, Bowers RM, Fierer N, Knight R, Lauber CL (2012) Co-habiting amphibian species harbor unique skin bacterial communities in wild populations. ISME J 6:588–596CrossRef PubMed PubMedCentral
    Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRef PubMed
    Myers JM, Ramsey JP, Blackman AL, Nichols AE, Minbiole KP, Harris RN (2012) Synergistic inhibition of the lethal fungal pathogen Batrachochytrium dendrobatidis: the combined effect of symbiotic bacterial metabolites and antimicrobial peptides of the frog Rana muscosa. J Chem Ecol 38:958–965CrossRef PubMed
    Navas CA, Otani L (2007) Physiology, environmental change, and anuran conservation. Phyllomedusa 6:83–103CrossRef
    Nicolas P, Vanhoye D, Amiche M (2003) Molecular strategies in biological evolution of antimicrobial peptides. Peptides 24:1669–1680CrossRef PubMed
    Popov CSFC (2013) Expressão de peptídeos bioativos na derme de Phyllomedusa distincta em dois estágios de desenvolvimento. Universidade Católica de Brasilia, Brasilia
    Rollins-Smith LA, Carey C, Longcore J, Doersam JK, Boutte A, Bruzgal JE, Conlon JM (2002) Activity of antimicrobial skin peptides from ranid frogs against Batrachochytrium dendrobatidis, the chytrid fungus associated with global amphibian declines. Dev Comp Immunol 26:471–479CrossRef PubMed
    Sambrook J, Russel DW (2000) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory Press, New York
    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541CrossRef PubMed PubMedCentral
    Tennessen JA, Woodhams DC, Chaurand P, Reinert LK, Billheimer D, Shyr Y, Caprioli RM, Blouin MS, Rollins-Smith LA (2009) Variations in the expressed antimicrobial peptide repertoire of northern leopard frog (Rana pipiens) populations suggest intraspecies differences in resistance to pathogens. Dev Comp Immunol 33:1247–1257CrossRef PubMed PubMedCentral
    Toledo L, Haddad C, Carnaval A, Britto F (2006) A Brazilian anuran (Hylodes magalhaesi: Leptodactylidae) infected by Batrachochytrium dendrobatidis: a conservation concern. Amphibian Reptile Conserv 4:e17–e21
    Williston EH, Zia-Walrath P, Youmans GP (1947) Plate methods for testing antibiotic activity of actinomycetes against birulent human type Tubercle bacilli. J Bacteriol 54:563–568PubMed PubMedCentral
    Wilson K (1989) Preparation of genomic DNA from bacteria. In: Ausubel F, Brent R, Kingston R, Moore D, Seidman J, Smith J, Struhl K (eds) Current protocols in molecular biology. Wiley, New York
    Xu X, Lai R (2015) The chemistry and biological activities of peptides from amphibian skin secretions. Chem Rev 115:1760–1846CrossRef PubMed
    Zasloff M (2009) Mysteries that still remain. Biochim Biophys Acta 1788:1693–1694CrossRef PubMed
  • 作者单位:Ananda Brito de Assis (1)
    Cristiane dos Santos (2)
    Flávia Pereira Dutra (2)
    Ailla de Oliveira Motta (2)
    Flávio Silva Costa (2)
    Carlos Arturo Navas (1)
    Beatriz Simas Magalhães (2)
    Cristine Chaves Barreto (2)

    1. Institute of Biosciences - Department of Physiology, University of São Paulo, Rua do Matão - Travessa 14 - N. 101, Cidade Universitária, SP, 05508-090, Brazil
    2. Graduate Program in Genomic Sciences and Biotechnology. SGAN 916, Catholic University of Brasília, Brasília, DF, 70790-160, Brazil
  • 刊物主题:Ecology; Biochemistry, general; Entomology; Biological Microscopy; Agriculture;
  • 出版者:Springer US
  • ISSN:1573-1561
文摘
The granular glands of anuran skin secrete an array of bioactive molecules that protect a frog against pathogens and predators. The skin also harbors a microbial community. Although there is evidence to suggest that the microbiota complement the innate immune defense systems against pathogen infection, the effect of the frog bioactive molecules on its resident microbiota has not yet been fully investigated. In the present study, the skin microbiota of Phyllomedusa distincta obtained from two different geographical areas was evaluated with molecular and culture-based approaches. The antagonistic effects exhibited by the host’s microbiota and by a novel dermaseptin peptide isolated from P. distincta skin were investigated. Four isolated bacterial colonies displayed antimicrobial activity against known frog pathogens. Our results were consistent with the hypothesis that microbiota from P. distincta may interact with pathogenic microorganisms to protect a frog’s health. On the other hand, the novel dermaseptin peptide exhibited an antimicrobial effect on pathogens as well as on some of the bacteria obtained from the skin microbiota. The richness of bacteria on P. distincta skin was further investigated by 16S rRNA gene clone libraries, which revealed that the family Enterobacteriaceae was prevalent, but a high variability at the species level was observed among individual frogs. Differences observed on the microbiota of frogs from contrasting habitats indicated an influence of the environment on the structure of the skin microbiota of P. distincta.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700